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Introduction 

Buffon’s Needle was a problem first posed in 1733 by mathematician Georges-Louis 

Leclerc, Comte de Buffon, who later recreated it with a solution in 1777.  At its most basic level, 1

the experiment/problem first establishes an infinite plane with parallel lines separated by distance 

d. Needles of length l are then dropped or placed randomly on the plane. The problem then asks 

what the probability that a needle lands crossing a line.   2

While this problem seemingly has no relationship to circles, π surfaces in this problem. 

When the distance d between parallel lines is equal to the length l of the needle, the probability is 

exactly .  In this investigation, I will address how and why π comes up by proving the result ofπ
2  3

the experiment, discuss how Buffon’s Needle set a precedent for the future of mathematical 

experiments, and address how this method was utilized to calculate π before modern computers 

were available. Additionally, I will discuss and find solutions to a variety of notable extensions 

of Buffon’s needle: cases where the length of the needle is less than or greater than the distance 

between lines, cases where circular coins are dropped, and cases where coins and needles are 

dropped onto planes of repeating polygons instead of parallel lines. 

 

 

 

 

 

1 Eric W. Weisstein, "Buffon's Needle Problem," Wolfram MathWorld, accessed May 1, 2020, 
https://mathworld.wolfram.com/BuffonsNeedleProblem.html. 
2 Lee Badger, "Lazzarini's Lucky Approximation of Pi," Mathematics Magazine 67, no. 2 (April 1994): 83, 
https://doi.org/10.2307/2690682. 
3 Weisstein, "Buffon's Needle," Wolfram MathWorld. 
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Buffon’s Needle 

Figure 1 illustrates how the experiment is set up.  The 4

vertical lines are separated by distance d and the needles 

are all of uniform length l. The needles shown are 

randomly dropped on the plane. We will first be analyzing 

the most simple case, in which l = d = 1. In this situation, 

there are 2 variables in the experiment: the distance 

between the center of the needle to the nearest line 

(denoted as c) and the angle θ from the center of the 

needle from the parallel lines. The needle shown does not cross a line.  

However, it will cross the line if c ≤

½sin(θ), as seen in the diagram to the 

left. The question then becomes: how 

often will c ½sin(θ)?≤   

To answer this question, we can graph the inequality as a 

function f(x) = ½sin(θ) c, where c is ½, because d = 1.≤  5

The values on or below the curve satisfy the inequality. 

To solve the inequality we can solve for the area under the 

function using an integral as follows: 

4 "Buffon's Needle," chart, Math Images, March 12, 2012, accessed September 28, 2020, 
https://mathimages.swarthmore.edu/index.php/Buffon%27s_Needle. 
5 George Reese and Pavel Safronov, Area under f(x) = 1/2sin(x), chart, MSTE, accessed September 14, 2020, 
https://mste.illinois.edu/activity/buffon/. 
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 = ½ = ½dθ∫
π

0
2

sin(θ) in(θ)dθ∫
π

0
s − os(θ))| ( c 0

π   

= ½ = ½ = ½(2) = 1− os(π) − os(0))] [ c − ( c 1 − ))] [ − ( 1  

Now that we have found the area under the curve to be exactly equal to 1, we can divide it by the 

area of the rectangle to find the probability of the needle crossing a line. The area of the 

rectangle is simply length*width = ½* The final probability is =  .6366 /2.π = π /π/21 /π2 ≈ ≈  

63.66%. Thus, π can be calculated by multiplying the total number of needle drops by 2 and then 

dividing by the number of times a needle crossed a line. The ratio 2/π is known as Buffon’s 

Constant and is prominent in several mathematical areas such as infinite sums/products and 

randomly generated polynomials.  6

 

 

 

 

 

 

 

 

6 Neil Sloane, "Buffon's Constant," OEIS, last modified June 6, 2012, https://oeis.org/wiki/Buffon%27s_constant. 
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Extensions in Variation of Needle Length 

Now that we have solved the problem when the length of the needle is equal to the distance 

between the lines, the problem can be expanded when we ask what the solution is when the 

needle is both shorter and longer than the distance between the lines.  

We will start with the scenario in which the length of the needle is shorter than the distance 

between the lines. First, define the ratio r as l/d. The probability can be computed with a similar 

integral as in the previous problem.  However, we will utilize a cosine function because the 7

triangle in question is more easily recognized when flipped to the opposite side. The integral is 

the result of our original multiplied by the chance that the needle is long enough from the center 

points. Once again, the possible angles range from 0 to π/2 because of symmetry. Theθ  

computation is as follows. 

= = from 0 to π/2 = /π cos(θ)dθ2 ∫
π/2

0
r 2l

πd os(θ)dθ∫
π/2

0
c 2l

πd in(θ)s (sin(π/2) sin(0))2l
πd − (  

= = 2r/π Thus, the probability of a needle of length l<d crossing a line is = 2l
πd π

2r 2l
πd  

 

 

7 J. V. Uspensky, Introduction to Mathematical Probability (n.p.: Digital Library Of India, 1937), 252, 
https://doi.org/2015.263184. 
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The scenario where the length of the needle is longer is 

considerably more involved. This is because the needle 

has a chance to cross two lines while the question simply 

tests if it crosses any line at all. The probability of 

crossing 2 lines must then be converted to that of the 

probability of crossing any line at all. We once again 

define r = l/d.  

Figure 7 portrays a visual representation of this 

probability where the probability is the area of the shaded 

region divided by the smaller rectangle.  8

Note that in (d/l)θ = s −1   

Therefore the total probability can be computed as follows: 

) /  l in(θ)dθp = ( ∫
arcsin(d/l)

0
s + d rcsin(d/l)[ 2

π − a ] 2
dπ  

=  2l
dπ − os(θ)| l[ c 0

arcsin(d/l) + d rcsin(d/l)[ 2
π − a ] / ]  

= )k(2l
dπ − os(arcsin(d/l)) (− os(0))[ c −  c ] + 2

dπ rcsin(d/l)2
π − a  

= + 2l
dπ − os(arcsin(d/l))[ c ] 2l

dπ + 1 − (arcsin(d/l))π
2  

Now, , where .os(arcsin( )) os(θ)c l
d = c rcsin(d/l)θ = a  

By using the identity  we have k2/d2 + os (θ) sin (θ) ,c 2 +  2 = 1 os (θ) c 2 = 1  

Thus k2/d2os (θ)c 2 = 1 −   

8 Lee L. Schroeder, "Buffon's Needle Problem: An Exciting Application of Many Mathematical Concepts," The 
Mathematics Teacher, 2nd ser., 67 (February 1974): 183-185, https://www.jstor.org/stable/27959621. 
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Therefore, os(θ)  c = √1  /d − k 2 2 = √ l 2
l −d 2 2

= /l√l  2 − d 2  

Hence, )) = os(arcsin(c l
d /l√l  2 − d 2  

We can substitute this equation into our original computation for 

p =  2l
dπ − /l[ √l  2 − d 2 ] + 2l

dπ + 1 − (arcsin(d/l))π
2  

= +] [ 2l
dπ + 1 − (π

2 /l√l  2 − d 2 rcsin(d/l))a  

Compared to the formula for scenarios where l  this is a far more complex solution, but far,≤ d  

more intriguing! The basic answer for all 3 is the same. All are some function of Buffon’s 

Constant, ./π2  

 

Buffon’s Needle on Square Tiles 

The first extension we will look at is one where the needle is 

dropped onto square tiles with side length d. For this case, we 

will assume that l , and that  (once again by≤ d /2,0 ≤ θ ≤ π  

symmetry all other angles can be represented within the 

bounds). The probability is the same as the first case 

with the added chance that it crosses a linesin(θ)l  

that is perpendicular to the first parallel set cos(θ).l  

Figure 9 graphically represents the probability: the 

area of the shaded region divided by the entire 

rectangular region.  The graph demonstrates that the 9

9 Schroeder, "Buffon's Needle," 185-186. 
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chance that a needle crosses a line is far greater than the previous cases we have analyzed. We 

employ both the cosine and the sine function because the needle has essentially a 2nd chance at 

crossing a line because the set of potential lines has been “flipped” over an imaginary line that is 

at angle 45° to all lines. This makes the solution slightly more involved. 

 ( )  p = cos(θ)dθ sin(θ)dθ[ ∫
π/4

0
l +  ∫

π/2

π/4
l ] / 2

dπ  

= = 2l
dπ sin(θ)| os(θ)| [ 0

π/4 − c π/2
π/4] 2l

dπ sin(π/4) sin(0) os(π/2) cos(π/4)[ −  − c +  ]  

= ) = (  2l
dπ 2

√2 − 0 − 0 + 2
√2 ( ) 2l

dπ √2 =  dπ
2 l√2  

For sake of brevity, I will not go over the case in which  Also note that when  the.l ≻ d d,l ≥ √2  

probability is 100% because there is no location where the needle can fall where it does not cross 

a line.  

The Buffon-Laplace Problem 

The necessary extension of the previous 

problem is one where the needle is dropped 

onto rectangles instead of squares. This 

scenario is referred to as the Buffon-Laplace 

problem as it was posed by Buffon and solved 

by French mathematician Pierre-Simon 

Laplace.  We will define the two side lengths 10

of the rectangle as j and k.  

 

10 Wolfram Research, Buffon-Laplace Needle Problem, accessed September 28, 2020, 
https://mathworld.wolfram.com/Buffon-LaplaceNeedleProblem.html. 
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In this scenario we consider 3 separate variables:  

1. The vertical distance from the bottom of the rectangle. 

2. The horizontal distance from the left side of the rectangle 

3. The angle at which the needle falls (θ). 

Thus, the region where the center of the needle can land can be represented through the area of 

the rectangle.  

k cos(θ))(j sin(θ)) j ksin(θ) klcos(θ)  cos(θ)sin(θ)A = ( − l ± l = k ± l − j ± l 2  

= = k (jcos(θ) sin(θ))j − l ± k k lcos(θ) kj − j − l sin(θ)| | + 2
l 2 sin(2θ)| |  

We take the angles because we no longer have the symmetry that was present in/2 /2− π ≤ θ ≤ π  

the previous problems. Thus, the probability can be computed by subtracting the integral of the 

above function from one. 

p = 1 − ∫
π/2

−π/2
jk lcos(θ) k )dθ( − j − l sin(θ)| | + 2

l 2 sin(2θ)| |  

= 1 −   jkθ lsin(θ) kcos(θ)  sin(2θ)[ − j + j − l 2 ] | π/2
−π/2  

=  = πjk  1 − 2lj lk  ( + 2 − l 2) / 1 − πjk
2l(j+k)−l 2  

Hence, the complementary probability  is . This seems like an overly complexπjk
2l(a+b)−l 2  11

solution, but makes perfect sense when we extend one side out to infinity, recreating the original 

Buffon’s Needle problem. 

= lim
j→∞

( πjk
2l(j+k)−l 2 )  lim

j→∞
( πjk

2lj+2lk−l 2 ) = lim
j→∞

( π∞k
2l∞+2lk−l 2 ) = ∞

∞  

 

11 Uspensky, Introduction to Mathematical, 256. 
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Now use L’Hopital’s Rule because we have an indeterminate form, taking the derivative of the 

top and bottom of the fraction. 

 lim
j→∞

( πjk
2lj+2lk−l 2 ) = lim

j→∞
( 2lj

πjk) = 2l
πk  

We have verified our solution to the original problem through an entirely different one!  

 

Clean Tile Problems 

Buffon also explored cases where coins (circularly 

shaped) were dropped onto planes of repeating 

polygons. This has been referred to as the Clean Tile 

Problem.  Let us first analyze the scenario we just 12

solved, but for circles rather than needles. We define 

the diameter of the circle as d and the side length of 

the squares to be l.  

As shown in figure 12, The probability that a coin of 

diameter d will not cross any lines is: 

l 2
(l−d) 2 =  

l 2
l −2ld−d2 2

= 1( − l
d  )2

 

Thus, the probability that a coin will land on a line is 

 1 − 1( − l
d  )2

 

Note that we don’t have to incorporate any 

trigonometry in this problem because of the circles’ 

12 Wolfram Research, Inc., Clean Tile Problem, accessed October 5, 2020, 
https://mathworld.wolfram.com/CleanTileProblem.html. 
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perfect rotational symmetry. Essentially, the circle represents all possible angles where the 

needle could fall. 

Let’s now consider the same scenario but with 

equilateral triangles of side length d (see figure 14). 

As shown in figure 14, the probability of a coin 

landing on no lines can be computed in the same way 

as above: 

 
l2

(1− d)√3 2

=  
l2

l −2 dl−3d2 √3 2
= 1( − l

d√3 )2
 

And follows the probability that a coins lands on a line: 

 1 − 1( − l
d√3 )2

 

Next, let’s consider the situation where the plane is tiled 

with regular hexagons. We can utilize the area of a 

regular hexagon area formula:  using the3 l .2
1 √3 2  

formula, the probability that a coin lands on no lines is:  

l2
(1− d)√3 2

=  1( − 3l
d√3 )2

 

And that a coin lands on a line. 1 − 1( − 3l
d√3 )2
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Notice that the answer is quite similar to that of the 

scenario where the plane was tiled with equilateral 

triangles. Figure 16 depicts how the two scenarios 

are related. The hexagon can be broken into six 

congruent triangles that make up the same 

probability when combined.  

 

 

We will finish with a scenario involving a rhombus. 

This will be slightly more involved because of the 

introduction of a new variable. Because the internal 

angles of a rhombus can still vary even with a set side 

length l, we must take into account this variance.  

We get and l dcotθΔ 1 = 2
1 l dtanθΔ 2 = 2

1  

Thus 

l (cotθ anθ) ( ) ( ) ( ) ( ) cscθsecθΔ = 2
d + t = 2

d cosθ
sinθ + sinθ

cosθ  = 2
d cos θ2

sinθcosθ + sin θ2

sinθcosθ = 2
d

sinθcosθ
cos θ+sin θ2 2 = 2

d 1
sinθcosθ = 2

d  

Thus the probability that a coin will not land on a line is 

 and1 cscθsecθ)
l2

(l− cscθsecθ)2
d 2

= ( − d
2l

2   

that it will land on a line.1 − 1 cscθsecθ)( − d
2l

2   

When  the probability is ,θ = 4
π 1 csc sec )( − d

2l 4
π

4
π 2 = 1 ( )( )) 1 ( ))( − d

2l
2

√2
2

√2
2 = ( − d

2l 2
4 2 = 1 ) ,( − l

d 2  

which is the solution to the square case as expected. 
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Buffon’s Ball Problem 

The last problem we will explore is called 

Buffon’s Ball Problem.  Suppose that the 13

needle has been placed into a transparent ball 

and is then dropped onto the plane containing 

parallel lines. The diameter of the ball will be 

denoted as l and the distance between the lines 

as d. This is equivalent to the probability that a 

needle is randomly placed in R3 and intersects a 

set of parallel planes separated by distance d. 

We will introduce another variable y, which is 

the distance of the base of the ball to the nearest 

line (See figure 19). Thus we are trying to find 

the probability that a needle crosses a line for a 

certain value of y. When  the needle cannot cross a line and when  the region/2 ,l < y /2,0 ≤ y ≤ l  

of the sphere with needle tip locations that will produce a crossing can be represented by two 

symmetrical spherical ‘caps’ (See Figure 20). To find the area of these caps we use the formula 

 where h is the height of the cap and R is the radius of the sphere. Since the caps haveπRh,A = 2  

height  the area of the regions of the sphere with needle tip locations that will produce a/2 ,l − y  

crossing is:  

πRh π( )( ) l (1 )A = 2 = 2 l
2

l
2 − y = π 2 − l

2y  

13 David Richeson, "A Pi-less Buffon's Needle Problem," Mathematics Magazine 79, no. 5 (December 2006): 
385-387, https://doi.org/10.2307/27642977. 
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Thus, on  the probability that a needle in a ball crosses a line is the probability we/2,0 ≤ y ≤ l  

just calculated divided by the total area of the sphere: 

πl2
πl (1− )2

l
2y

= 1 − l
2y  

Notice how π is not even present in the solution! This is because finding the solution required no 

variable for an angle. How interesting! We seemingly added complexity to the problem by 

extending it into a 3rd dimension, but our answer is arguably even simpler! 

 

Significance in the World of Math 

Buffon’s Needle was the first recorded usage of a Monte-Carlo method, which utilizes a random 

sampling technique to gauge probability instead of using direct computation. A Monte-Carlo 

method is most often utilized when a direct computation is not possible/extremely difficult and 

gained popularity when computers became powerful enough to run computations on a 

large-scale. Buffon’s Needle was one of the primary Monte-Carlo methods used to approximate 

π before more efficient methods were discovered. The most notable example of this would be the 

approximation done by Mario Lazzarini in 1901 that accurately calculated π to six decimal 

places after only 3408 drops of a needle.  This problem has also been seen as the “founder” of 14

the geometric probability field in mathematics that has led to further problems within this field 

such as Bertrand’s Paradox.  Since the 20th century, the field has been divided into two separate 15

branches: Integral geometry and Stochastic geometry.  

14 Badger, "Lazzarini's Lucky," 84. 
15 Swarthmore Edu, "Buffon's Needle," Math Images, last modified March 12, 2012, accessed October 5, 2020, 
https://mathimages.swarthmore.edu/index.php/Buffon%27s_Needle#Why_It.27s_Interesting. 
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Researchers at the University of Bath found an 

especially interesting application of Buffon’s 

Needle. Their study found that ants can accurately 

estimate the size of an anthill by visiting the hill 

twice and analyzing how many times their paths 

cross.  The ants enter the hill and walk around 16

leaving behind a distinct chemical in their path. 

They later return to the hill and gauge how many 

times they cross their original path. More crosses 

mean a smaller hill and fewer crosses mean a larger hill. In summary, the study said: “In effect, 

an ant scout applies a variant of Buffon's needle theorem: The estimated area of a flat surface is 

inversely proportional to the number of intersections between the set of lines randomly scattered 

across the surface.”  It is easiest to understand this application by noting that the ant is 17

essentially running Buffon’s Needle problem by moving the lines further apart. The larger the 

space between the lines, the lower the chance of intersection. As was shown in this investigation, 

the angle at which the needle falls makes a smaller difference when the space between the lines 

is longer (or the needle being shorter, both are equivalent statements). It’s always awesome to 

see mathematics describing our natural world in a brilliant way such as this! 

 

16 S. T. Mugford, E. B. Mallon, and N. R. Franks, "The Accuracy of Buffon's Needle: A Rule of Thumb Used by 
Ants to Estimate Area," Behavioral Ecology 12, no. 6 (November 2001): 655-658, 
https://doi.org/10.1093/beheco/12.6.655. 
17 Mugford, Mallon, and Franks, "The Accuracy," 655. 
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Buffon’s Needle has led to the creation of a new field of mathematics (geometric probability) 

and has paved the way for further developments in the use of Monte-Carlo methods to 

approximate irrational numbers. As with most mathematical discoveries, Buffon had no way of 

knowing the significance of what seemed to him, a trivial mathematical question. He contributed 

to the world of mathematics in the best way he knew—by doing maths simply for the fun of it. 

His work goes to show that mathematics sees the most progress when its authors are not there on 

purpose, but by accident, intrigue, and sheer brilliance. 
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