PARAMETERIZATIONS OF DESCARTES QUADRUPLES

CLYDE KERTZER

ABSTRACT. A Descartes quadruple is a set of four mutually tangent circles. A Descartes quadruples
generates what is known as an Apollonian circle packing. By studying the ratios of the circles’
curvatures, two distinct types of symmetric packings quadruples appear. We give parameterizations
of these Descartes quadruples and count how many packings of each type are contained by a given
enclosing circle.
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1. INTRODUCTION: UPPER HALF PLANE & MOBIUS TRANSFORMATIONS
We define the projective space of dimension n over field F, written P, as w, where we

have an equivalence relation ~ between two vectors vy ~ v if v1 = Avg for some A € F*. Often, a
vector is scaled so that the last coordinate is 1. For example, [1,7] ~ [2,14] ~ [1/7,1]. This means
that Pt = C?/ ~ = CU {oo}. In other words

o] {[1,0] if w=0
’ [z/w,1] if w # 0.

Now define linear maps on M>(C) so invertible linear maps are GL2(C). Thus, we have that
PGL2(C) = GL2(C)\{A : A € C*}. These linear fraction transformations PSLy(C) are called
Mébius transformations. Explicitly,

a b z . a b\ (z\ (az+bw
<c d) € PGLy(C) acts on (w) via (c d) <w> = (cz+dw> .
On CU {oo} and for w # 0 we have

az+bw aZ +b

= eC
cz+dw ¢ +d

z
—eceCr—
w



which means

a b .Z_a,z—i-b and a b -oo—g
c d ez 4d c d e

It is straightforward to check that this is a group action where composition is matrix multiplica-
tion. Note that matrix multiplication is not commutative. Moreover, Mobius transformations are
conformal, meaning they preserve angles between circles and they map circles to circles. We under-
stand a straight line as a circle through infinity. The three special types of Mobius transformations
are

1
1. Translations: z — 2z +a : <0 61l>

: : ' a 0 va 0
2. Scaling/rotation z — az : (0 1) ( 0 1/\/6>

. -1 0 -1
3. Inversion: z — — : .
z 1 0
The upper half plane model is given by H = {x +iy € C : y > 0}. Here the boundary is RU{c0}.
We define the modular group I' = PSLy(Z) which is a subgroup of PSLa(R) that acts on H. It
is generated by the two elements S : 2 — —1/z and T : z — z + 1. The modular group has the
presentation

[~ (S,T:5=1,(ST)°=1).

Note S and T" have matrix representations

0 -1 1 1
S_<1 0> and T_<0 1).

These structures will be useful in our study of quadratic forms.

2. QUADRATIC FORMS

A binary quadratic form is a function Q(z,y) = Ax? + Bxy + Cy? for some A, B,C € Z. For
simplicity, we will refer to binary quadratic forms as forms. A form is primitive if gcd(A, B,C) = 1.
We often write Q(x,y) = Ax? + Bxy + Cy? as Q = [A, B,C]. A form represents a number n if
there exists integers = and y such that Q(z,y) = n. If z and y are coprime, we say n is properly
represented.

Example 2.1. We state a familiar result of elementary number theory using forms. The form
Q(z,y) = 2% +4y? = [1,0, 1] properly represents an odd prime p if and only if p =1 (mod 4).

The discriminant D of [A, B, C] is defined by D = B2 —4AC. If D < 0, Q is definite. If D = 0,
then Q is degenerate and Q will factor as Q = (ax + by)2. If D > 0 and nonsquare, Q is indefinite.
An indefinite form will represent both positive and negative numbers. We say Q) is positive definite
if @ only properly represents positive numbers and negative definite if ) only properly represents
negative numbers. If we know the sign of both D and A, we can tell if a form is positive or negative
definite, or indefinite. This yields the following proposition.



Proposition 2.2. A form Q is positive definite if and only if D < 0 and A > 0.

Proof. We complete the square to find

2 2,2

_ By
4A “rop 1A

B B2y2 32
_ 2, = _
—A<x —|—Axy+ 4A2>+ (C 4A>

A+ B 2+ D
— AT T oY v’ AA

If @ is positive definite, then since Q(1,0) = A, A must be positive. Since Q(—%, 1) = %, D <0.
The converse is clear. If D < 0 and A > 0, then

B \? -D
A — 2 O
<x+2Ay> +y <4A) > 0.
This same proof shows that a form @ is negative definite if and only if D < 0 and A < 0. The proof

is the exact same as that of positive definite. Also, note that D = B? — 4AC = B? mod 4 =0, 1.

Example 2.3. Let Q(z,y) = 1022 + 14zy + 5y% with D = 142 —4.10-5 = —4 < 0. We will find the
numbers it properly represents. We can write @ as a sum of squares as Q = (3z + 2y)? + (z + y)?%.
Now change variables by letting 2’ = 3z +2y and 3/ = 2 +y so Q' = (2')2+ (y')? = [1,0, 1]. Writing
in matrix form we see this is a M6bius transformation.

3 2\ [z ' 3 2
(1 1> <y)_<y’>’ and note that det<1 1)-3-1—2-1—1.

Proposition 2.4. The action of PSLo(Z) on a quadratic form by g - Q = Q(ax + by, cx + dy)
(1) is a right group action,
(2) preserves the discriminant of Q, and
(3) preserves the set of properly represented numbers.

Proof. Take
_fa b (e f
g= (C d) and h= (g h> € PSLs(Z).

We will first show that go (ho Q) = (gh) o Q, that is, the action of PSLy(Z) on quadratic forms is

a right action. We have
b e f
2ol 1) Qe

o(ho@:(
) o Qe+ fu.go 1)

Q (a(ex + fy) + b(gz + hy), clex + fy) + d(gz + hy))
Q (z(ae + bg) +y(af + bh), x(ce + dg) + y(cf + dh))

(ae—i—gb af+bh> 0 O, )

Q = Az? + Bay + Cy? = A2® 4+ Bry +

I
o

ce+dg cf +dh

< )( )]‘)Q(wfw:(gh)ocz(x,y)



and we have proved (1).
To see that the action preserves discriminant, observe that

Q(azx + by, cx + dy) = A(azx + by)? + B(az + by)(cx + dy) + C(cx + dy)*
= A(a®2? 4 2abzy + b*y?) + B(acz? + adzy + beyx + bdy?)
+ C(Px? + 2cdzy + d%y?)
=22 (Aa2 + Bac + CCQ) + 2y(2Aab + Bad + Bbc + 2Ccd)

+y* (Ab* + Bbd + Cd?)
SO

D(Q) = (2Aab + Bad + Bbc + 2Ccd)? — 4 (Aa® + Bac + Cc?) (Ab? + Bbd + Cd?)

= 4A%a*b* + 2ABa®b? + 2ABAb?c + 4ACabed + 2ABa’bd + B*a®b’ + B*ab’c
+ 2BCacd® + 2ABab*c + B?abed + B*b*¢® + 2BCbc*d + 4ACabed
+ 2BCacd? + 2Bbc*d + 4C*bc*d — 4 (A*a*b*v + ABa*bd + ACa*d?
+ ABab*C + B*abed + BCacd® + Ab*c* + BCbc®d + C*c*d?)

= 8ACabed + B*a®d® — 2B%abed + B*b*c? — 4ACa*d* — 4ACH*c®

= a’d* (B* — 4AC) + b°¢* (B* — 4AC) + 2abed (B® — 4AC)

= (B® — 4AC) (ad — bc)* = B> — 4AC

where we have used ad — bc = 1 and we have proved (2). More generally, we have showed that the
discriminant scales by the square of ad — bc.

To see that the transformation preserves the set of properly represented numbers, we need to
show that g - Q = Q(ax + by, cx + dy) holds when g = S and g = T. We have

Sz(cl) _01> and Tz((l) 1)

S Q(z,y) = Q(0)x + (=1)y, 1)z + (0)y)
= A(—y)* + B(—y)z + Ca”
= Ay? — Bay + C2?

and

T-Qz,y) = Q((1z + 1)y, (0)z + (1)y)
= Az +y)? + Bz +y)x + Cy?
= A(2® + 22y + y*) + B(a? + 2y) + Cy?
= Ax? + 2Azy + Ay? + Ba? + Bay + Cy?
= (A+ B)x* + 2A+ B)zy + (A + O)y*. O

For the purposes of circle packing, we will focus on forms with D < 0, so from now on we
will assume D < 0. These forms also have a notion of simplicity. Two forms may be different yet
represent the exact same numbers. Take the forms Q = z? 4 zy +y? and Q' = 322 + 3xy + 32 both
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with D = —3. If we write out the first few numbers they represent we find that
Q represents 1,2,3,7,13,... and Q' represents 1,2,3,7,13,...

In fact, these two forms represent the exact same numbers. This is because Q' reduces to Q. A
positive definite form [A, B, C] is reduced if |B| < A < C and if either equality holds, B > 0. Two
forms are equivalent if their reduced forms are the same (up to the parity of B). So, @ and @’ are in
fact equivalent. Every form is equivalent to a unique reduced form. In general, it is better to work
with reduced forms, and we have the following reduction algorithm for negative discriminants:

1. Apply T™ so that 2|B| < A.
2. If A> C, apply S to swap A and C.
3. Terminate when |[B| < A< C.If |[Bl|=A,B>0andif A=C, B>0.

Example 2.5. Let Q = [7,13,11] with D = 169 — 4(7)(11) = —139. Then we have that
TY7,13,11] = [7, -1, 5]
ST7,13,11] = [5,1,7].
If @ = [31, 16, 3] we have

S[31,16,3] = [3, —16, 31]
T[3,-16,3] = [3, —10, 18]
T[3,-10,18] = [3, -4, 11]
T[3,—4,11] = [3,2, 10].

Proposition 2.6. There are finitely many reduced forms with negative discriminant D.

Proof. Using the fact that a reduced form satisfies |B] < A < C' we have
D = B* - 4AC
< A? —4AC
< A? —4A% = —3A%
o)
342 < -D
0<A<+-D/3

so there are finitely many choices for A. Given A, there are finitely many choices for B and thus C
is determined uniquely. Therefore, there are finitely many reduced forms with discriminant D. [

We define the narrow class group cl(D) = {equivalence classes of forms of disc D} which has a
group law where two forms are equivalent if their reduced forms are equal. This yields the narrow
class number h(D) = |cl(D)|, the number of reduced forms with discriminant D. We have the
rough estimate h(D) ~ v/—D.



Example 2.7. Let D = —4 with h(D) = 1 so Q(z,y) = 22 + y2. Let p be a prime p =1 (mod 4).
Then there is a solution to B?> = —1 (mod p):

p|B*+1
4p | (2B)? + 4
4pC = (2B)?> +4  for some C € Z
(2B)? — 4pC = —4
so [p,2B,C] has D = —4 and thus we have shown that p is a sum of two squares.

Example 2.8. We will use reduction to show that Q(x,y) = [2,1,10] with D = —79 and R(x,y) =
[4,—1,5] also with D = —79 are not equivalent. We find that @ represents 2 at (1,0) but that R
cannot represent 2 as 4z + xy + 5y > 322 + 5y% > 2 for x,y > 1.

Example 2.9. Let D = —23. Then we have that
—23 = B> — 4AC
B? +23
44
We require |B| < A < C. Clearly B must be odd and

0<A<+/23/3
1<AL2

so we test the cases A = 1,2. When A =2, C' = (B2+23)/8 so B = *1, giving the forms [2, +1, 3].
When A = 1, C = (B? +23)/4 so B = 41, giving the forms [1, £1, 3]. However, we exclude the
equivalent case [1,—1,3] so h*(—23) = 3.

C:

3. APOLLONIAN CIRCLE PACKINGS

We are now prepared for our study of Apollonian circle packings, the main topic of this thesis.
Let’s begin by defining a Descartes quadruple as a set of four mutually tangent circles with disjoint
interiors, written (A, B,C, D). Apollonius of Perga, who first studied Apollonian circle packings
(hence the name) found that if three circles are mutually tangent, there are exactly two circles that
are tangent to all three.

FIGURE 1. A demonstration of the Theorem of Apollonius.



Remark. Figure 1 and all upcoming figures were generated using the code of [Ric23].

The circles in the second quadruple of Figure 1 clearly have disjoint interiors, so it is a Descartes
quadruple. However, we wish for the first quadruple to also be a Descartes quadruple. So, we can
view the enclosing circle as an “inverted” circle, so its interior is everything outside of it. We can
have at most one inverted circle in a Descartes quadruple, as its interior is infinite.

Now, given a circle with radius r, we define the circle’s curvature to be 1/r. This definition allows
us to interpret a line as a circle with infinite radius having curvature 0. Additionally, the curvature
of the enclosing inverted circle is given a negative sign. For sake of simplicity we will also refer to a
quadruple of four mutually tangent circles’ curvatures as a Descartes quadruple, written [a, b, ¢, d].
This definition yields a fundamental relation between the curvatures of a Descartes quadruple due
to Descartes.

FIGURE 2. A Descartes quadruple with a circle of infinite radius: a straight line!

Theorem 3.1 (Descartes’ Equation). If four circles in a Descartes quadruple have respective cur-
vatures ka, kg, ko, and kp then

2 (K3 + kg + k& + kD) = (ka+ kg + ke + kp)*.
To prove Descartes’ equation, we need a trigonometric lemma.

Lemma 3.2. If a + 3+ 0 = 27 then

cos® a + cos? B+ cos? 0 = 1 + 2 cos a cos 3 cos 6.

Proof. Suppose that oo + 5 + 6 = 27. Then using standard trigonometric identities we have

1 2 1 2 1 20
cos? o+ cos? B+ cos? ) = + cos a+ + cos ﬁ+ + cos

2 2 2
3  cos2a+cos2B  cos(2m — (2a+25))
=<+ +
2 2 2
2
= g + cos(a + ) cos(a — B) + COS(;H_/B)
2cos?(a+ ) — 1

3
= + cos(a+ B) cos(a — B) + 2

=1+ cos(a + ) cos(a — B) + cos?(a + f3)
=1+ (cos(ax — B) + cos(a + 3)) cos(2m — 0)
=1+ 2cosacosfcost. O



FiGUrE 3. Four mutually tangent circles with centers A, B, C, and D.

Now we are ready to prove the theorem.

Proof. Suppose we have four mutually tangent circles with centers A, B, C, and D (refer to Figure
3 above) with respective radii 74, rg, r¢, and rp. Circle D in the center is not labeled. The side
lengths of AABC' are

AB=r4+rg, BC=rg+rc, and AC =14+ 71rCc
and the lengths from the centers of circles A, B, C' to D are
AD=rp+rp, BD=rg+rp, and CD=rgc+rp.
Let /BDC = «, ZCDA = 3, and ZADB = 6. The law of cosines in AADB yields



AD? + BD? — AB?
2-AD-BD
_(ra+ rp)?+ (rg +7rp)? — (ra+rp)?
N 2(ra+rp)(re+rp)
B 2r2 +2rp(ra +rg) — 2rarp
B 2(ra+rp)(rg+rp)
2rarp
(ra+rp)(rg+7p)
Similarly, we find in AADB and ACDA that

cosf =

—1—

2rpro 2rATC
cosa=1— and cosf=1-— .
(rg+7rp)(rc+1rp) (ra+rp)(rc+rp)

Now replace each radius by its respective curvature k4, kg, ko, and kp and name the associated

fraction to each angle A

cos 1 Qk% 1—AX
o = - = — Aa
(kg + kp)(kc + kp)
2k?
cosff=1-— L =1-A
P (ka + kp)(kc + kp) A
2k?
cosf=1-— D =1- ).

(ka+kp)(kp+kp)
By Lemma 3.2 we have that
(1= Aa)2 4+ (1= Ag)% + (1= M) = 1+ 2(1 = Aa)(1 = Ag)(1 — Xg)
A2 F NG+ A+ 2080 = 2(Xas + Agdg + Aag)
)\a )\,B )\0 1 1 1
2=2(—+—+—).
VSV VS VLIS VS Vi <M+MﬁW)
Substituting back our values for the As we find
(ka+kp)* | (kg +kp)* | (kc+kp)*

2 =
2k, 2k3, 2k *
5 (kp+ kp) (k¢ +kp) = (ka+kp)(kp+kp) (ka+kp)(kp+kp)
2 + 5 + 2 :
k2 k2 k2

We multiply through by 2k3 and simplfy to find that
K% + k% + k2 + 2kp(ka + kp + ko) + Tk = 6k + 4kp(ka + kp + ko)
+ 2(kakp + kpkc + kakc)
k4 + kb + k& + kb = 2kp(ka + kp + ko)
+ 2(kakp + kpkc + kake)
= (ka+kp + ko +kp)? — (K4 + ki + k& + kD)
2ky + k5 4+ k2 4+ k%) = (ka+ kg + ke + kp)2. O

Remark. This proof is the exact same when one of the four tangent circles is the enclosing circle.



Now, beginning with three mutually tangent circles, we add the two circles of Apollonius. Re-
peating this process with the new triples that form, we create an Apollonian circle packing.

FIGURE 4. The Apollonian circle packing corresponding to [—23, 48,49, 52|.

We can find the curvatures of the two circles of Apollonius in terms of the first three given circles’
curvatures.

Corollary 3.3. If three mutually tangent circles have curvatures a, b, and c, then the two circles
of Apollonius, d and d' have curvatures

d=a+b+c+2Vab+ac+bc and d =a+b+c—2Vab+ ac+ be.
Moreover, d+d =2(a+ b+ c).

Proof. First, we solve for d from the Descartes Equation to find that
2(a®+ b+ +d*) —(a+b+c+d)?=0
d* —2d(a+b+c)+ (a* + b* + ¢ — 2ab — 2bc — 2ac) = 0.
The quadratic formula gives

2(a+b+c) £ /4a+b+c)2—4(a%+ b2+ 2 — 2ab — 2bc — 2ac)

d =
2
=a+ b+ cE2Vab+ bc+ ca.
Thus, there are two options for d. Their sum is 2(a 4+ b + ¢). O

10



This means that if a, b, ¢, d € Z then the entire packing will consist of circles with integer
curvatures. The question naturally arises: which integers will we see? We will choose primitive
circle packings, that is, ged(a, b, c,d) = 1.

3.1. The Apollonian Group. Given a quadruple [a, b, ¢, d] we obtain [a, b, ¢, d'] by matrix multi-
plication of

12 2 2
0 1.0 0
=g 010
0 00 1

applied to the Descartes quadruple as a vector [a,b, ¢, d]. This comes from the equation for d’ =
2(a+ b+ ¢) — d. Similarly, we define

1 0 00 10 0 0 100 0
9 _1 2 2 01 0 0 010 0
2=10 0 1 0| 7|22 1 2| @ Si=|y 41
0 0 01 00 0 1 2 2 2 —1

Example 3.4. When we apply S; to the primitive quadruple [—6,11, 14, 15] we have

—6 —(—6) +2(11 + 14 + 15) 86
11 11 11
Silqy | = 14 ~ |14
15 15 15

The example in Figure 1 shows this exact swap, just without curvatures labeled.

The Apollonian Group is given by the presentation A = <Sl, Sy, 83,84 : S? = 1> . Note that A is
a subgroup of O3 1(Z) (the orthogonal group of a quadratic form of signature 3, 1). In other words,
A preserves the Descartes form. We can also write this as SZT ®QpS; = Qp where

1 -1 -1 -1
-1 1 -1 -1
-1 -1 1 -1
-1 -1 -1 1

Qp =

This also means that

= Descartes Form.

o o Q

(a b ¢ d)QD
d

Like forms, Descartes quadruples also have a notion of reduction. We say a Descartes quadruple
[—a,b,c,d] is reduced if —a < b < ¢ < d. By applying the above swaps, we can replace any curvature
in a quadruple with a smaller curvature until we have the smallest possible four curvatures. As we
saw above, [86,11, 14, 15] reduces to [—6,11,14,15].

11



4. SYMMETRIC PACKINGS

We say a positive integer a has a packing if there exists a primitive reduced Descartes quadruple
[—a,b,c,d]. So, it is natural to ask: given a positive integer n, what types of packings and how
many does it have? For example, the integer 7 has precisely three packings:

O
[-7,12,17,20].

Note the first two packings have a line of symmetry, whereas the third packing does not. In this
section, we will focus on parameterizing and counting the number of each type of these packings
that a given positive integer has. This will explain why 7 has no other packings. We will first look
at the first two types of symmetric packings.

A packing is symmetric if it has a line of symmetry. A sum-symmetric quadruple is a primitive
reduced Descartes quadruple satisfying 2(a + b + ¢) — d = d (that is, the next circle generated
after the first four has the same curvature as one of the first four). These packings have a line of
symmetry that is not tangent to any circles. Two examples are:

The sum-symmetric packing [—3,4,12,13]. The sum-symmetric packing [—4, 5, 20, 21].

12



A twin-symmetric quadruple is a primitive reduced Descartes quadruple with ¢ = d or ¢ = b.
These packings will have a line of symmetry tangent to the two circles with the same curvature.

Two examples are:

The twin-symmetric packing [—8, 12, 25, 25].

The twin-symmetric packing [—4, 8,9, 9].

There are two other packings that fit into both of these categories, the first is the strip packing
which is an infinite packing with infinitely many lines of symmetry! We will prove this later in

Proposition 4.3.

e O

)CECC) A O O
A P b
\?@"( \?@?(
VQV

S IAN
> 4
o ©) PO

FIGURE 8. The strip packing: [0,0,1,1].

The second is the so called bug-eye packing, which has a line of symmetry corresponding to a

sum-symmetric packing and one corresponding to a twin-symmetric packing.

13



FIGURE 9. The bug-eye packing: [—1,2,2, 3].

We will now prove some important properties of sum-symmetric packings.

Proposition 4.1. The following equalities hold in a sum-symmetric packing [a,b, c,d].
(i) a+b=d—c,
(ii) d* = a* + b* + ¢2, and
(111) ab+ ac + bc = 0.
Proof.

(i) We know that a sum-symmetric packing has the property that 2(a + b+ ¢) — d = d which
immediately yields a +b=d — c.
(ii) Plugging part (i) back into the Descartes Equation we find

(a+b+c+d)? =2+ +c+d)

(d—c+c+d)? = 2a® + 2b° + 2¢% + 242
Ad* = 2 (a® + b° + %) + 2d°
d* = a® +b* + 2.

14



(iii) Use substitutions from parts (i) and (ii) to find
a+b+c=d
(a+b+e)=a?+b*+
a? +b% + ¢ 4 2ab + 2ac + 2bc = a* + b* + ¢
ab + ac + bc = 0. U

We will now prove these are the only two types of symmetric packings.

Proposition 4.2. A symmetric packing (excluding the strip packing) is either sum-symmetric or
twin-symmetric.

Proof. There are number of requirements for the packing of a given reduced Descartes quadruple
(A,B,C, D) to have a line of symmetry. The first is that the line must go through the center of
the enclosing circle, that is, the line of symmetry must be a diameter of A. The line must also be a
line of symmetry of B, C, or D. Without loss of generality, take the line of symmetry through B.

FIGURE 10. Possible line of symmetry for the quadruple (A, B,C, D).

Figure 10 demonstrates that once a possible line has been selected there are two possibilities for
the packing to be symmetric: either C' and D must be reflections of one another or the line is also
a line of symmetry of one of them. In the second case, D’ and D must be reflections. Note that in
a reduced quadruple, two circles cannot be on the same side of this line, else they leave room for a
larger circle and thus a smaller curvature.

15



FIGURE 11. The two possibilities for the packing of a quadruple to be symmetric.

Thus, if a packing is symmetric, either C is a reflection of D and thus their curvatures are the same
so the packing is twin-symmetric or D is a reflection of D’ so the packing is sum-symmetric. [

Proposition 4.3. Only the strip and bug-eye packing are both sum-symmetric and twin-symmetric.

Proof. Suppose we have a sum-symmetric packing [a, b, ¢, d], that is a + b+ ¢ =d. If ¢ = d then
a+b+c=c
a+b=0.
Plugging a + b = 0 and ¢ = d into the Descartes Equation we have
20 + 2+ 2+ d*) = (a+b+c+d)?
2(a® + 0% 4 2¢?) = (¢ + ¢)?
2a% + 20° + 4¢ = 4¢?

2a% +2b* = 0
which only has the integer solution a = b = 0, which gives the strip packing [0, 0, 1,1]. If b = ¢ then
a+c+c=d
a+2c=d

a? + dac + 4% = &2,
and by part (ii) of p roposition 4.1 we have
d? = a® +b* + ¢
a>+4dac+4 =a®> + 2+
dac+2¢* =0
c2a+¢)=0

16



which means either ¢ = 0 which is impossible, or 2a + ¢ = 0 which means ¢ = —2a. Now we find
d=a+b+c=a+ —2a—2a=-3a
which gives the packing [a, —2a, —2a, —3a]. This is only primitive and reduced when a = —1 which
gives the bug eye packing [—1,2, 2, 3]. O
Theorem 4.4. A sum-symmetric quadruple [a,b,c,d] is of the form
with ged(z,y) =1, and z,y > 0.
Proof. Suppose that [a,b,c,d] is a reduced primitive symmetric quadruple such that a < 0 < b <
¢ < d. Adding a® to both sides of Proposition 4.1 (iii) we have
ab+ac+bc=0
a® + ab+ ac + be = a?
(a+b)(a+c)=ad’

Let g = ged(a+b,a+c) so that a+b = gz? and a+c = gy? for some z,y > 0. This yields gry = —a
as +a gives a non reduced quadruple. Now, we have

b=(a+b)+(—a) =gz’ +gry and c=(a+c)+(—a)=gy’+gzy.
Using the relation d = a + b 4+ ¢ we can substitute what we have just found to find
d=a+b+c=(—gry) + (g2* + gzy) + (99" + gzy) = g((z +y)* — zy).
Thus, we have found that a sum-symmetric quadruple is given by
[~g9zy, gz(z+y), gy(x +y), 9((z +y)* —2y) ]
Clearly, for the quadruple to be primitive, g must be 1, meaning x and y are coprime. Thus,
a=—zy, b=xz(x+y), c=ylz+y), andd= (z+y)* — zy
with ged(z,y) = 1. O

This means that the number of sum-symmetric packings of n is the same as the number of
coprime factor pairs of n. We define

#{distinct prime divisors of n} n > 2
win) = 1 n=1

-1

Corollary 4.5. A natural number n has 29~ sum-symmetric packings.

Proof. Because n = —xy determines the sum-symmetric packing for coprime x and y, write n =
i P -py¥, so w(n) = k. For each prime power we can choose to put it as a factor of x or
y, so there 2F total factor pairs zy but we divide by two to account for symmetry. Thus, n has

2k /2 = 2k—1 — 2@ =1 gum-symmetric packings. O

Proposition 4.6. In a reduced Descartes quadruple [a,b, c,d|, two of a,b,c,d are odd and two of
a,b,c,d are even.

Proof. Clearly all of a, b, ¢, d cannot be even else the quadruple is not reduced. Taking the Descartes
equation mod 2 gives a4+ b%+c?>+d? = 0 mod 2. As squaring preserves parity, this means a+b+c+
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d = 0 mod 2, so it is impossible that exactly one of a, b, ¢, or d is even or odd. To rule out the case
that all of them are odd, take the Descartes equation mod 16 to find that (a+b+c+d)? = 8 mod 16
which is impossible in integers. Therefore, two of a, b, ¢, d are odd and two of a, b, ¢c,d are even. [

Corollary 4.7. In a twin-symmetric packing [a,b, c,c], a and b have the same parity.
Now we are ready to parameterize all twin-symmetric packings.

Theorem 4.8. A twin-symmetric quadruple is one of following two forms
{[—xy, zy +2y2, Lz +y)?, Lz +y)?] x,y odd x>y
[—2xy, 22y + 4y, (x +1)?, (x+ y)Q] Ty even >y
with ged(x,y) =1 and xz,y > 0.
Proof. Without loss of generality, we will consider the cases ¢ = d and ¢ = b to be the same as they

are both reduced. That is, if ¢ = b, switching b and d does not change if the quadruple is reduced
or not. Now, plugging in ¢ = d into the Descartes Equation gives

(a+b+c+e)? =200+ +c+?)
2ab + 4ac + 4bc = a® + b*
4(ac + be) = a® — 2ab + b

cla+b) = (b;a>2.

Because a and b have the same parity by Corollary 4.7 and a < b, b_T“ € N. So, let g = ged(a+b, )

so that ¢ = gm? and a + b = gn? for some m,n > 0. This yields gmn = b_Ta, as %b gives a non

reduced quadruple. Hence,
b
m= \/E and n= @t .
g g

Case 1. When a and b are both odd, ¢ must be even by Corollary 4.7. Thus, g = ged(a + b, ¢)
is even, so g = 2k for some k € N. This yields

m=+/c/2k and n=+/(a+b)/2k.

Now, let £ = 2m —n and y = n so that

b—a a+b a
xy (2m —n)n mn +n o + T 7
This means a = —kxy. Now, we obtain expressions for b and ¢ as follows:

b= —a+ (a+b) = —(—kzy) + 2kn® = kzy + 2ky* = k(zy + 2¢°)

and
c:2k£ :k4m2 :k4m2—4mn+n2+4mn—2n2+n2
2k 2 2
_k(2m—n)2+2n(2m—n)+n2 _kx2+2xy+y2 _k(x+y)2
N 2 N 2 N 2

Thus, we have found that when a and b are odd, the twin-symmetric packings is given by

[—kzy, k(zy +2y%), (@ +y)?% L@ +9)].
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Clearly, for the quadruple to be primitive, k must be 1, so g = 2 and x and y are coprime, which
gives the parameterization
[_:Ey? TY + 23/2, %(‘/E + y)27 %(1" + y)Q} .

Note that x +y = 2m — n +n = 2m which is even so %(x + y) is an integer. With these choices, it
easy to check this quadruple is always primitive.

Case 2. When a and b are both even, ¢ must be odd by Corollary 4.7. Thus, g = ged(a + b, ¢)
is odd. This yields

m=+/c/g and n=+/(a+b)/g,

where n is even. Now, let x = m —n /2, and y = n/2 which are both positive, so that

) 2( n)(n> +n2 b—a+a+b a
—2zy=—2{m—=)(=)=—mn+ — = = -
4 2) \2 2 = ag 29
which means a = —2gxy. Now, we obtain expressions for b and c as follows:

b=—a+ (a+b) = —(—2gzy) + gn® = 2gzy + 4gy* = g (2zy + 49°)

and

2

=5((n=3)" 2 =3) () + ) et s <ot v

Thus, we have found that when a and b are even, the twin-symmetric packings is given by
[—292y. g(2xy +4y%), 9(x +y)%, g(x +y)*].
For the quadruple to be primitive, g = 1, so x and y are coprime, which gives the parameterization
[—2zy, 2zy + 42, (z+19)?, (= + y)z] )
With these choices, it easy to check this quadruple is always primitive. ]

To state the number of twin-symmetric packing that n has, we define 6, as in [GLM™'03]:

1 n=2mod4
Op =
0 otherwise.

Corollary 4.9. A natural number n has (1 — 6,) - 221 twin-symmetric packings where w(n) is
the number of distinct prime divisors of n.

Proof. When n = 2 mod 4, write n =2 -py - p2 - - pr, where p; are odd primes. There are no factor
pairs of n with both factors odd, so the first parameterization is impossible. When z is even 4 | 2zy
and hence 2zy # 2 mod 4, so the second parameterization is also impossible. Therefore, any natural
number equivalent to 2 mod 4 has no symmetric packings.

The proof for when n # 2 mod 4 follows exactly the same as Corollary 4.5. O
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Corollary 4.10. Everyn € N > 3 has at least one sum-symmetric and one twin-symmetric packing

given by
[—n,n—l—l, n2—|—n, n2—|—n—|—1]
and
(T 2 2
1 1
Cnomt2, 2 (PR} (2t n odd
2 2
[ 2\ 2 2\ 2
—n, n+4, nt , nt n=0 (mod 4)
2 2
i 4 4
\_—n,n+4,g<n;— ),Z(n; >+4] n=2 (mod 4),
respectively.

Theorem 4.11 ([GLM 103, Theorem 4.2]). The primitive, reduced Descartes quadruples [—a, b, c, d]
with —a < 0 < b < ¢ <d are in one-to-one correspondence with positive definite forms of discrim-
inant —4a?® having nonnegative middle coefficient. The associated reduced binary quadratic form
[A, B,C] = Az? + Bxy + Cy? is given by

[A,B,C] :=[-a+b—-a+b+c—d,—a+].

Primitive root quadruples correspond to reduced binary quadratic forms having a nonnegative middle
coefficient. In particular, the number of primitive root quadruples of —a is equal to h (—4a2), the
number of GLa(Z)-equivalence classes of positive definite forms of discriminant —4a?.

This theorem allows us to directly convert a Descartes quadruple to a reduced form.

Theorem 4.12. The corresponding quadratic form of a sum-symmetric quadruple
[—zy, z(z +y), y(@ +y), (@ +y)* -2y
s given by

Q= [2%,0,5°] .

Proof. Plugging in the corresponding values into Theorem 4.11 we find
Q(u,v) =1[A,B,C]=[-a+b,—a+b+c—d,—a+]
= [~y + (wy+2°), —zy + (xy + 2°) + (zy + v°) — ((z +y)* — 2y) , —2y + (zy + °)]
= [:E2,0,y2} . ]

Theorem 4.13. The corresponding quadratic form of a twin-symmetric quadruple

[—zy, 2y + 202, 3z + )% 5z +9)?] zyodd x>y

[—2zy, 2zy + 492, (z + )% (z+y)?] T even x>y
s given by

Q=222 30" +y%)]  and Q= [4, 47 2% + 7],

respectively.
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Proof. Plugging the first paramaterization’s values into Theorem 4.11 we find
Q=[ABCl=[-a+b—a+b+c—d,—a+]
=[xy + (zy +20%), —ay + (zy +29°) + 5(z + ) = §(z +y)°, —zy + (3(x +)*)]
= [20°,20%, 3 (2 +97)] .
Plugging the second paramaterization’s values into Theorem 4.11 we find
Q=[ABCl=]-a+b—-a+b+c—d,—a+]
= [—2zy + 2zy + 4%, 22y + 20y + 47 + (z + y)° — (z +y)*, 2° + 97
= [4y?, 4%, 2% + 7] . O

These forms are indeed the ambiguous forms of cl(—4a?) which correspond to the reduced forms
|B| < A < C. They arise on the “edge cases:”
B =0,
B|=A, or
C.

(3) A

and correspond to the forms with order in the class group at most two. See Corollary 4.9 and pages
7-8 in [Bue89].

These results also align with those in elementary genus theory. The following is Proposition 3.11
in [Cox13]:

Proposition 4.14. Let D = 0,1 mod 4 be negative, and let r be the number of distinct odd primes
dividing D. Define the number p as follows: if D =1 mod 4, then u =1, and if D = 0 mod 4, then
D = —4n, where n > 0, and p is determined by the following table:

n M
n =3 mod 4 r
n=1,2mod4 |r+1
n =4 mod 8 r+1
n =0 mod 8 r+2

Then the class group cl(D) has exactly 2*~' elements of order < 2.

5. NON-SYMMETRIC PACKINGS

As opposed to symmetric-packings, non-symmetric packings are far more common. They do not
have simple parameterizations like the sum-symmetric or twin-symmetric packings. Instead they
are best understood as infinite families as found by [BTK11]. The following graph shows the total
number of non-symmetric packings of each number up to 100, 000.
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FIGURE 12. The number of non-symmetric packings of n up to 100, 000.

However, there are some families of non-symmetric packings based on modular criteria. For
example, if n = 0 mod 3, then

2 2
[—n,n—l—Q, %—i—TH—l, 7;+n+4]

is a Descartes quadruple. If n = 1 mod 5, then

7#+4+17ﬂ+4
5 "5

[—n, n 45, —1—2]

is a Descartes Quadruple.
In [BTK11], the authors provide parameterizations of non-symmetric packings and show that
every primitive reduced Descartes Quadruple (symmetric or not) can be written as

n? + kn + o2 n2+kn+(k‘a)2]

— k
|: n7n+ ) k ) k
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where n, k, and « are integers such that % € N, ged (n, k, ”2‘,20‘2) =1,nk>0,and 0 < a <
(k — «). They also proved that given two packings of n,

2 k 2 2 _ 27
[—n, n+k, not ]:H— ak, n”+ kn +k(k o) where n =n;  (mod k)
and
2 k! 2/ 2 k! Kk — )27
[—n, n+ kK, e ]: + %% , noA R +k’( o) where n = ng (mod k),

where k and k' are relatively prime, we can generate an associated composition:

n? +kk'n+ a2, n®+kk'n+ (kk' — a)?
{_n’ no+ kK, Kk ’ Kk

Theorem 5.1 ([GLM 103, Theorem 4.3]). A natural number n > 2 has

n X*4(p) w(n)—d6n—1
T (1 )

b
pln

primitive reduced quadruples, where x_4(n) = (=1)"=Y/2 for odd n and 0 for even n.

Corollary 5.2. The number of non-symmetric packings of n is given by

%H <1 _ X‘if”) n <2°J<”>—1> (2—5n 24 5n) .

pln

Proof. We simply subtract the sum-symmetric and twin-symmetric packings from the total number
of packings given by Theorem 5.1. This gives

E — XL@ w(n)—op—1 _ _ Cow(n)-1 . w(n)—1
il (1 » ) +2 (1-6,)-2 2
pln twin-symmetric sum-symmetric
_n — XL@ w(n)—1 —6n
41|'I<1 ; >+<2 )(2 2+5n). O
pln

6. EXTENDED EXAMPLE

Let’s use our results to find every packing of the number 20 = 22-5. As 20 has two distinct prime
divisors, w(20) = 2 and 20 # 2 mod 4, so d29 = 0. Theorem 5.1 tells us that the total number of
packings of 20 is

@ (1 _ X—4(P)> 1 gw(20)=b20-1 _ 5 <1 _ X—4(2)) (1 B X—4(5)> 19201
4 oi20 P 2 5

o (-3 rer () oo

ow(20)-1

Corollary 4.5 says that of these 6 total packings, = 2 are sum-symmetric packings. Corollary
4.9 says that (1 — 520)2“’(20)71 = 2 are twin-symmetric. Thus, we know 20 has two sum-symmetric
packings, two twin-symmetric packings, and two non-symmetric packings. Let’s find exactly what

these packings are. We know the two coprime factor pairs of 20 are (1,20) and (4,5). We plug these
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into Theorem 4.4 which yields the two packings
(1,20) = [~1-20, 1(1 +20), 20(1 + 20), (14 20)* —1-20] = [-20, 21, 420, 421]
(4,5) = [~4-5,4(4+5), 5(4+5), (4+5)*—4-5] =[-20, 36, 45, 61].
Now, plugging them into Theorem 4.8 (and dividing the even term by two yields the two packings
(1,10) = [-2-1-10, 2-1-10+4(1)%, (1 +10)%, (1 +10)*] = [-20, 24, 121, 121]
(2,5) = [-2-2-5,2-2-5+4(2)% (2+5)%, (2+5)*] =[-20, 36, 49, 49] .

To find the non-symmetric packings, we note 20 = 7 mod 13 which corresponds to the family

n? + 13n + 42 n? +13n + (13 — 4)?
—n, n+ 13, ,

13 13
SO

20% 4 13 - 20 + 42 20% + 13- 20 + (13 — 4)?
13 ’ 13
is a non-symmetric packing. Additionally, 20 = 3 mod 17 which corresponds to the family

n? 4+ 17n + 52 n? +17n + (17 — 5)?
e () ()

[—20, 20 + 13, ( >] = [-20, 33, 52, 57

SO

[—20, 37, 45, 52].

202 +17-20 + 52 202 +17-20 + 122
17 ’ 17

Thus, we have found and categorized all 6 packings that 20 has. We summarize our findings with

[—20, 20 + 17, <

the display:

[—20, 21, 420, 421]. [—20, 36, 45, 61]

FIGURE 13. The two sum-symmetric packings of 20.
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[—20, 24, 121, 121] [—20, 36, 49, 49].

F1GURE 14. The two twin-symmetric packings of 20.

[—20, 33, 52, 57]. (20, 37, 45, 52]

FiGure 15. The two non-symmetric packings of 20.
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