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1 Introduction

A pivotal branch of number theory, Diophantine equations, deals with equations that only
allow for integer solutions. These were first studied by Diophantus of Alexandria in the
third century AD. The most prominent types of these equations were quadratic. Diophantus
studied the following three quadratic equations:

ax2 + bx = c ax2 = bx + c ax2 + c = bx.

These three equations are in fact equivalent, but Diophantus had no concept of zero and
thus avoided negative coefficients by only looking at positive solutions.1 This goes to show
that even with some of the most rudimentary mathematical techniques, Diophantus left his
mark on the world of number theory. In this paper, I will discuss Euclid’s formula and exten-
sions, linear Diophantine equations, systems of linear Diophantine equations, Diophantine
equations of degree two or more, the Jacobi-Madden equation, and some applications these
equations carry.

Lemma 1 (Euclid’s Lemma). Let p be a prime. If p | ab, a, b ∈ Z, then p must divide either
a or b.2

Lemma 2 (Euclid’s Formula). The combination of every m,n ∈ N generates a set of
Pythagorean triples3 through

a = m2 − n2 b = 2mn c = m2 + n2

where
a2 + b2 = c2.

2 Linear Diophantine Equations

Linear Diophantine equations are the most simple variant of Diophantine Equations and
have the form

ax + by = c

where a, b and c are given integers. This equation will have a solution if and only if c is
a multiple of gcd(a, b). If (x, y) is a solution, then other solutions must be of the form
(x + kv, y − ku), k ∈ Z, where u and v are the quotients of a and b (respectively), gcd(a, b).

1. L. J. Mordell, ”Pure and Applied Mathematics,” in Diophantine Equations (London, England: Aca-
demic Press, 1969), 30:345.

2. Euclid, ”Proposition 30,” in Book VII (Alexandria: Euclid, 300 BC), 30, accessed November 4,
2020. https://mathcs.clarku.edu/djoyce/java/elements/bookVII/bookVII.html#:text=Proposition%2030,
one%20of%20the%20original%20numbers.

3. Kenneth E. Caviness and R. Lewis Caviness, ”Euclid’s Formula and Properties of Pythagorean
Triples,” Wolfram Demonstrations Project, last modified March 8, 2017, accessed February 12, 2021,
https://demonstrations.wolfram.com/EuclidsFormulaAndPropertiesOfPythagoreanTriples/.
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Let’s prove this result. To simplify this process, we will first prove a similar case called
Bézout’s Identity.4

Theorem 1 (Bézout’s Identity). Let a and b be integers with greatest common divisor d.
Then there exist integers x and y such that ax + by = c. More generally, the integers of the
form ax + by are exactly the multiples of d.

Proof. Given any nonzero integers a and b, let the set S = {ax + by | x, y ∈ Z}. Because
S is nonempty, it has a minimum element of d = as + bt by the well-ordering principle. To
prove that d = gcd(a, b), we must first show that d is a common divisor of a and b and that
for any other common divisor c, c 6 d. Write a | d

a = dq + r

where r is the remainder and q ∈ N. We know that S ∪ {0} contains r because

r = a− dq

r = a− q(as + bt)

r = a(1− qs)− bqt

r = a(1− qs) + b(−qt).

Thus, r is of the form ax + by and therefore r ∈ S ∪ {0}. However, 0 ≤ r < d and d is the
smallest integer contained by S, therefore r cannot be in S. This means that r must be 0,
proving that d is a divisor of a. Thus, d is a divisor of b and is therefore a common divisor
of a and b. We must now show that c ≤ d. Because c is also a common divisor of a and b,
there exist u and v s.t. a = cu, b = cv. Then

d = as + bt

d = cus + dvt

d = c(us + vt).

Therefore, c is a divisor of d and c ≤ d.

Now to begin the original proof. Once again our intention is to show that the equation
ax + by = c will have a solution if and only if c is a multiple of gcd(a, b).

Proof. If (x, y) is a solution, then other solutions must be of the form (x+kv, y−ku), k ∈ Z,
where u and v are the quotients of a and b (respectively). If d = gcd(a, b), Bézout’s Identity
proves that there exists e and f such that ae + bf = d. If c is a multiple of d, then c = dh,
h ∈ Z and (eh, fh) must be a solution. Then for all (x, y), d divides ax + by. Thus, if
ax + by = c has a solution, c must be a multiple of d. If a = ud and b = vd, so for all (x, y)

a(x + kv) + b(y − ku) = ax + by + k(av − bu)

= ax + by + k(udv − vdu)

= ax + by.

4. Arvin Deravy, ”Bezout’s Identity (Bezout’s Lemma),” GeeksforGeeks, last modified May 20, 2020,
accessed February 13, 2021, https://www.geeksforgeeks.org/bezouts-identity-bezouts-lemma/.
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Thus (x+kv, y−ku) is another solution. Given the two solutions: ax1 +by1 = ax2 +by2 = c,
we know that u(x2 − x1) + v(y2 − y1) = 0. As u and v are coprime, Euclid’s Lemma shows
that v divides x2 − x1 and therefore ∃ k ∈ Z, s.t.

x2 − x1 = kv y2 − y1 = −ku
x2 = x1 + kv y2 = y1 − ku.

Therefore ax + by = c will have a solution if and only if c is a multiple of gcd(a, b). If (x, y)
is a solution, then other solutions must be of the form (x + kv, y − ku), k ∈ Z, where u and
v are the quotients of a and b (respectively) of gcd(a, b).

3 Systems of Linear Diophantine Equations

The equation AX = B expresses the general form of a system of linear Diophantine equa-
tions. We can prove whether or not this system has solutions, and if it does, we can find all
its solutions. We first define what it means for a matrix to be in row-echelon form:

1. The bottom row of the matrix contains all the zeros.

2. The first value in each nonzero row is to the right of all the leading values in the row(s)
above it.

The method we wish to detail is: To solve the system of linear Diophantine equations
AX = B, unimodular (the matrix’s determinant is equal to zero) row reduce [At | I] to
[R|T ] where R is in row-echelon form. Then the system AX = B has solutions if and only
if the system RtK = B has solutions for K and all the solutions of AX = B are of the form
X = T tK.5 Use substitution for K to solve RtK = B. The general form 6 looks like

d1
∗ d2
∗ ∗ d3
...

...
...

. . .



k1
k2
k3
...

 =


b1
b2
b3
...


First, row reduce At s.t. the first column begins with the gcd and all zeros below. Then do
the same with the other columns as shown above. The equation E[At | I] = [R|T ] represents
the row reduction of [At | I] to [R|T ], where E is an invertible matrix. Thus, T = E and
TAt = R. Therefore, AT t = Rt and A = Rt(T t)−1. The matrix T is a product of matrices
that correspond to the performed unimodular row operations. Thus, each of these matrices
has a determinant of ± 1, det(T ) = ±1. AX = B is equivalent to Rt(T t)−1X = B and
K = (T t)−1X. Thus X = T tK and X will have integer solutions if and only if K does.
Hence, AX = B has integers solutions for X if and only if RtK = B has integer solutions
for K.

5. William J. Gilbert, ”Linear Diophantine Equations,” University Waterloo California Mathematics,
accessed November 5, 2020, https://www.math.uwaterloo.ca/ wgilbert/Research/GilbertPathria.pdf.

6. Gilbert, ”Linear Diophantine,” University Waterloo California Mathematics.
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Example 1. Let’s run through an example of a system of linear Diophantine equations.

5a + 6b + 8c = 1

6a− 11b + 7c = 9

Use unimodular row-reduction7 5 6 1 0 0
6 −11 0 1 0
8 7 0 0 1

 −→
 5 6 1 0 0

1 −17 −1 1 0
3 1 −1 0 1

 −→
 1 −17 −1 1 0

0 91 6 −5 0
0 5 2 −3 1



−→

 1 −17 −1 1 0
0 −13 2 1 −2
0 52 2 −3 1

 −→
 1 −17 −1 1 0

0 13 −2 −1 2
0 0 10 1 −7

 .

Thus, we find RtK = b [
1 0 0
−17 13 0

]k1k2
k3

 =

[
1
9

]
.

Solve the system to find

k1 = 1

−17k1 + 13k2 = 9.

By substituting k1 we find that k2 = 2 and k3 ∈ Z. Now we substitute back in to find

K =

1
2
k

 and

x1

x2

x3

 = T tK

−1 −2 10
1 −1 1
0 2 −7

 =

1
2
k

 =

10k − 5
k − 1
−7k + 4

 .

The integer solutions in general form where k ∈ Z are

a = 10k − 5

b = k − 1

c = −7k + 4.

4 Applications of Linear Diophantine Equations

Many real-world problems require Diophantine Equations in order to solve for whole number
solutions. Problems involving the number of people, houses, etc., where fractional units do
not apply (e.g. you cannot have 1/2 of a person). Consider the following example: James
invested a part of his investment in 10% bond A and a part in 20% bond B. His interest
income during the first year is $4,000. If he invests 60% more in 10% bond A and 10%

7. Ibid.
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more in 20% bond B, his income during the second year increases by $2,000. Find his initial
investments. We represent his investments into bond A (x) and bond B (y) with8

10x + .20y = 4000.

The income in his second year yields the equation

.10(1.60x) + .20(1.10y) = 6000

.16x + .22y = 6000.

The two equations give the following matrix[
0.10 0.20
0.16 0.22

] [
x
y

]
=

[
4000
6000

]
.

A X B

We can solve this using the technique proved in the previous section. First, we ensure that
A is invertible by taking its determinant

det(A) = (.10 ∗ .22)− (.20 ∗ .16) = .022− .032 = −.01 6= 0.

Because A is invertible, the technique will work. Begin by setting X equal to A−1B and
solvning

X = A−1B

=
1

−0.01

[
0.22 −0.20
−0.16 0.10

] [
4000
6000

]
=

1

−0.01

[
−320

40

]
=

[
32000
4000

]
.

This yields the final solutions of x = 32000 and y = 4000, meaning his final investments
were $32,000 into bond A and $4,000 into bond B.

5 Diophantine Equations of Degree Two

Diophantine equations of degree two are Diophantine equations in which all variables are
raised to the 2nd power, such as a2 + b2 = 3c2. Solving these equations involves three
potential outcomes.

1. The equation has no solutions

2. The equation has a finite number of solutions

3. The equation has an infinite number of solutions.

8. Deepinder Kaur and Meenal Sambhor, ”Diophantine Equations and Their Applications,” International
Journal of Mathematics and Its Applications 9, no. 1 (2021): 3, http://ijmaa.in/v5n2-b/217-222.pdf.
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5.1 Modular

We can use modular arithmetic to prove that an equation has no solutions. Let’s take the
previous example, a2+b2 = 3c2, and prove that it has no solution, besides the trivial solution
(0, 0, 0). Suppose we divide a, b, and c by gcd(a, b, c), s.t. they are now coprime. Let us now
deviate to show a separate proof that x2 ≡ 0, 1 mod 4.

Proof. The first case, when x is even, k ∈ Z

x = 2k

x2 = (2k)2

x2 = 4k2 ≡ 0 mod 4.

The second case, where x is odd, k ∈ Z
x = 2k + 1

x2 = (2k + 1)2

x2 = 4k2 + 4k + 1

x2 = 4(k2 + k) + 1 ≡ 1 mod 4.

Because the LHS of the equation a2 + b2, is the sum of two squares, it will either be equal
to 0(mod4) (even + even), 1(mod4) (even + odd), or 2(mod4) (odd + odd). The RHS of the
equation 3c2, will always have a modulus of 0(mod4) or 3(mod4). Both sides being equivalent
to 0(mod4) satisfy the equation, which means that a and b must be even, implying that they
share the factor of 2 and are thus not coprime. This is a direct contradiction to what we
stated beforehand when we divided a, b, and c by gcd(a, b, c). Thus a2 + b2 = 3c2 has no
integer solutions.

5.2 Infinite Descent

Another technique used to prove that an equation has no solutions is infinite descent, also
known as Fermat’s method of descent. This technique is essentially a proof by contradiction
in which showing that a statement holds for some number and therefore smaller numbers,
leading to an “infinite descent” and finally a contradiction. Put differently, an infinite
sequence of decreasing natural numbers cannot exist.9

Example 2. Let us utilize this method for the example x4 + y4 = z2. Begin by assuming
that there are solutions besides the trivial solution (0, 0, 0). Additionally, we assume that x2,
y2, and z are coprime as we can cancel the common factors if they are not. Then ∃ coprime
p, q ∈ N s.t.

x2 = 2pq

y2 = p2 − q2

z2 = p2 + q2.

9. Andrew Ellinor, ”Fermat’s Method of Infinite Descent,” Brilliant.org, accessed February 11, 2021,
https://brilliant.org/wiki/general-diophantine-equations-fermats-method-of/.
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We write x4 + y4 = z2 as (x2)2 + (y2)2 = z2, to see that (x2, y2, z) is a Pythagorean triplet.
Note that y2 = p2 − q2 yields another Pythagorean triplet with coprime a, b ∈ N s.t.

q = 2ab

y2 = a2 − b2

p = p2 + b2.

We then substitute to get
x2 = 2pq = 4ab(a2 + b2).

If (a or b) | p then it cannot divide a2 + b2 because a and b are coprime. Thus ab and a2 + b2

are perfect squares. Because ab is a perfect square, and a, b are coprime, a and b must also
be perfect squares. We notate this by letting a = d2, b = e2, and p = P 2. Because a2 + b2 is
a perfect square

P 2 = a2 + b2 = d4 + e4

and
p < p2 + q2 = z.

Thus we have reached an infinite descent (contradiction) and we have shown that the equation
has no solutions.

5.3 Parameterization

In cases where there is at least one solution, one solution can be found, and then other
solutions can be derived from the first solution. Parameterization is a common technique
used to do this.10 Start by geometrically interpreting the Diophantine equation. Take
Q = (x1, . . . , xn) = 0 to be a homogeneous Diophantine equation of degree two. The
nontrivial solutions are (a1, . . . , an), the coordinates of a point on the surface defined by Q.
This set can be written as (p1

q
, . . . , pn

q
) where q, p1, . . . , pn ∈ Z. Thus the integer solutions

are (k p1
d
, . . . , k pn

d
), where k ∈ Z and d = gcd(p1). Let us define A = (a1, . . . , an) to be an

integer solution to Q(x1, . . . , xn) = 0. We will parameterize the surface by the lines that
pass through A. Taking an 6= 0, the general case is q(x1, . . . , xn−1) = Q(x1, . . . , xn, 1) = 0
which has the rational point R where

R = (r1, . . . , rn−1) = (
a1
an

, . . . ,
an−1

an
).

If this point is singular, all lines that pass through R are contained within the surface and
a cone is formed. The general case is a line defined parametrically that passes through R

x2 = r2 + t2(x1 − r1)

... =
...

xn−1 = rn−1 + tn−1(x1 − r1).

10. L. J. Lander, ”Geometric Aspects of Diophantine Equations Involving Equal Sums of Like Powers,” The
American Mathematical Monthly 75, no. 10 (December 1968): 1061-1062, https://doi.org/10.2307/2315731.
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When substituted into q, we get a second-degree polynomial with a zero at(x1−r1). In x1 the
quotient will be linear and equal to the division of two polynomials with integer coefficients

x1 =
f1(t2, . . . , tn−1)

fn(t2, . . . , tn−1)
.

To find any xi where i = 1, . . . , n− 1

xi =
fi(t2, . . . , tn−1)

fn(t2, . . . , tn−1)
.

Thus the homogeneous case is

Fi(ti, . . . , tn−1) = t21fi

(
t2
t1
, . . . ,

tn−1

t1

)
.

The polynomials parameterize the surface defined by Q is

x1 = F1(t1, . . . , tn−1)

... =
...

xn = Fn(t1, . . . , tn−1).

Because F1, . . . , Fn are homogeneous polynomials, the solution point remains unchanged if
all ti are products of the same rational number. Thus tn, . . . , tn−1 are coprime integers and
we let d = gcd(tn, . . . , tn−1). The solutions are then of the form

xi = k
Fi(t1, . . . , tn−1)

d
.

Take the example of Pythagorean triples x2 + y2 = z2, or x2 + y2 − z2 = 0, where (0, 0, 0) is
trivial. Note that this is also the homogeneous equation of the unit circle. It is easy to see
the nontrivial solution (−1, 0, 1). This solution corresponds to the solution point (−1, 0) on
the unit circle. To find the parameterization of this solution, use the slope of the line that
passes through this point

y = t(x + 1).

Plugging this into the circle equation with a radius of 1 we have

x2 + y2 − 1 = 0

x2 − 1 + t2(x + 1)2 = 0.

Factoring we have
(x− 1)(x + 1) + t2(x + 1)2 = 0

and dividing by x + 1 yields
x− 1 + t2(x + 1) = 0.

9



Solve for x in terms of t gives us

x− 1 + t2(x + 1) = 0

x− 1 + t2x + t2 = 0

x + t2x = 1− t2

x(1 + t2) = 1− t2

x =
1− t2

1 + t2
.

Solve for y from y = t(x + 1) plugging in the previous equation

y = t

(
1− t2

1 + t2
+ 1

)
= t

(
1− t2

1 + t2
+

1 + t2

1 + t2

)
= t

(
1− t2 + 1 + t2

1 + t2

)
= t

(
2

1 + t2

)
=

2t

1 + t2
.

Homogenizing as shown before where k ∈ Z we have the three solutions

x = k

(
s2 − t2

d

)
x = k

(
2st

d

)
x = k

(
s2 + t2

d

)
where s, t ∈ Z and are coprime and d = gcd(s2 − t2, 2st, s2 + t2). Note that d = 2 if s and t
are both odd and d = 1 if one is even and the other is odd.

6 Euclid’s Formula and Extensions

6.1 Euclid’s Formula

As stated at the beginning of this paper and used throughout, Euclid’s formula can be used
to generate an infinite number of Pythagorean triples. Let’s prove Euclid’s Formula.11

Proof. We will ensure that all solutions are primitive by defining a, b, and c to be coprime.
Note that as a, b, and c are coprime at least a or b is odd, so let us take a to be odd. It
follows that b is even and c is odd. Starting with

a2+b2 = c2

b2 = c2 − a2

11. Waclaw Sierpinski, ”Obtaining Primitive Pythagorean Triangles,” in Pythagorean Triangles, dover ed.
(Mineola, N.Y.: Dover Publications, 2003), vi.
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factoring yields
(c + a)(c− a) = b2.

Divide both sides by c− a

(c + a) =
b2

c− a

divide both sides by b
c + a

b
=

b

c− a
.

Because c+a
b

is rational, we can set

c + a

b
=

m

n
m,n ∈ N.

It then follows that
c− a

b
=

n

m
.

This yields the system of equations

c

b
+

a

b
=

m

n
c

b
− a

b
=

n

m
.

Rearrange to solve for c
b

c

b
=

m

n
− a

b
c

b
=

n

m
+

a

b
.

Set both equation equal to each other

m

n
+

a

b
=

n

m
− a

b
2a

b
=

m

n
+

n

m
=

m2

mn
+

n2

mn
=

m2 + n2

mn

leaveing us with equality
a

b
=

m2 + n2

2mn
.

Rearrange to solve for c
b

a

b
=

m

n
− c

b
a

b
=

c

b
− n

m
m

n
− c

b
=

c

b
− n

m
2c

b
=

m

n
− n

m
=

m2

mn
− n2

mn
=

m2 − n2

mn

11



leaving us with equality
c

b
=

m2 − n2

2mn
.

Because m
n

is fully reduced, both m and n cannot be even. If both m and n were odd, m2−n2

would be a multiple of 4, as an odd square is congruent to 1(mod4) and 2mn would not be a
multiple of 4. However, 4 would be the smallest possible factor in the numerator (m2 − n2)
for the denominator (2mn) it would be 2. This shows a to be even, which is contrary to it
being defined as odd. It follows that one of m or n is even and one is odd and m2±n2 is also
odd. This shows us that the fractions are reduced completely and we can set the numerators
and denominators equal to each other. This yields Euclid’s formula

a = m2 − n2 b = 2mn c = m2 + n2

which can also be written as

a =
m2 − n2

2
b = mn c =

m2 + n2

2
.

6.2 Pythagorean Quadruples

This naturally leads us to question if we can find generalized solutions of Pythagorean
quadruples in the same way. A Pythagorean quadruple is

a2 + b2 + c2 = d2.

Begin by noting the expansion of

(m + n)2 = m2 + 2mn + n2

Let a2 = m2, b2 = 2mn, and d = m + n. Thus,

a2 + b2 + c2 = m2 + 2mn + n2 = (m + n)2 = d2

However, we can see that this formula cannot generate all Pythagorean quadruples through
the example of (1, 2, 2, 3) by noting that there are no integer solutions for m and n that
satisfy the equation.12 Suppose instead we take three numbers a, b, and p s.t. p | (a2 + b2)

and p2 < a2 + b2. We can use a precise substitution of c = a2+b2−p2

2p

a2 + b2 + c2 = a2 + b2 +

(
a2 + b2 − p2

2p

)
expand

= a2 + b2 +
a2 + a2b2 − a2p2 + a2b2 + b4 − b2p2 − a2p2 − b2p2 + p4

4p2

12. Chandrahas Halai, ”Triples and Quadruples: From Pythagoras to Fermat,” Plus Magazine, last modi-
fied November 14, 2012, accessed February 14, 2021, https://plus.maths.org/content/triples-and-quadruples.
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factor out a2 + b2

= a2 + b2 +
(a2 + b2)2 − 2p2(a2 + b2) + p4

4p2
=

(a2 + b2)2

4p2
+

a2 + b2

2
+

p2

4

factor into a perfect square

=

(
a2 + b2 + p2

2p

)2

We can now let d2 =
(

a2+b2+p2

2p

)2
, then d = a2+b2+p2

2p
and thus a2 + b2 + c2 = d2. Now we

can see why the conditions of p are so important. Note that when both a and b are odd, no
quadruples are generated.

6.3 Lebesgue’s Identity

Pythagorean quadruples also have a close relationship with Lebesgue’s identity which states

(m2 + n2 + p2 + q2)2 = (2mq + 2np)2 + (2nq − 2mp)2 + (m2 + n2 − p2 − q2)2.

Proof. Begin by expanding the base (LHS) of the identity

(m2 + n2 + p2 + q2)2 = (m2 + n2 + p2 + q2)(m2 + n2 + p2 + q2)

= m4 + m2n2 + m2p2 + m2q2 + m2n2 + n4 + n2q2

+ m2p2 + n2p2 + p4 + p2q2 + m2q2 + n2q2 + p2q2 + q4

combine like terms

= m4 + n4 + p4 + q4 + 2m2n2 + 2m2p2 + 2m2q2 + 2n2p2 + 2n2q2 + 2p2q2

Organize into factorable groups

= (4m2q2 + 8mnpq + 4n2p2) + (4n2q2 − 8mnpq + 4m2p2)

+ (m4 + n4 + p4 + q4 + 2m2n2 − 2m2q2 − 2m2p2 − 2n2q2 − 2n2p2 + 2p2q2)

= (2mq + 2np)2 + (2nq − 2mp)2 + (m2 + n2 − p2 − q2)2.

As can be easily seen, Lebesgue’s identity is in the exact form of a Pythagorean quadruple,
and we can use it to derive an additional method for finding such Pythagorean quadruples.
Let a = 2mq + 2np, b = 2nq − 2mp, c = m2 + n2 − p2 − q2, and d = m2 + n2 + p2 + q2.
Thus, the substitution yields a2 + b2 + c2 = d2. However, the formula still cannot generate
all possible Pythagorean quadruples. 13 In fact, it has been shown that no single formula

13. Dray Goins and Alain Togbe, ”On Pythagorean Quadruples,” International Journal of
Pure and Applied Mathematics 35, no. 3 (2007): 366, accessed February 14, 2021,
https://www.math.purdue.edu/egoins/notes/On-Pythagorean-Quadruplets.pdf.
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can generate all possible Pythagorean quadruples. We avoid this problem by solving for the
ratios of a, b, and c (proof not shown).14

a

d
=

2mp

m2 + n2 + p2
b

d
=

2np

m2 + n2 + p2
c

d
=

p2 −m2 − n2

m2 + n2 + p2

Similarly, If a scaling factor t is added to Lebesgue’s identity, it can generate all possible
Pythagorean quadruples.

a = t(2mq + 2np)

b = t(2nq − 2mp)

c = t(m2 + n2 − p2 − q2)

d = t(m2 + n2 + p2 + q2)

To write a, b, c, and d in terms of m, n, p, q, and t, we can first set p, q = 1, without loss of
generality.15 This yields

m =
−b− c

c− d
n =

c− b

a− d
t =

d− a

4

When substituted into t(m2 + n2 − p2 − q2) = a, the above solutions are correct if and only
if a2 + b2 + c2 = d2

6.4 The Jacobi-Madden Equation

The Diophantine Equation a4 + b4 + c4 +d4 = e4 was first explored by Euler in the late 1700s
who made the conjecture that 4 was the smallest number of 4th powers that can sum to
another 4th power. This is now known as Euler’s sum of powers conjecture and was disproved
in 1966 by L. J. Lander and T. R. Parkin.16 Mathematicians Lee Jacobi and Daniel Madden
used a4 + b4 + c4 + d4 = (a + b + c + d)4 to derive a special case of a Pythagorean triple
through the following derivation.17 Beginning with the two identities

a4 + b4 + c4 + d4 = (a + b + c + d)4

a4 + b4 + (a + b)4 = 2(a2 + ab + b2)2

By adding (a + b)4 + (c + d)4 to both sides of the first equation we have

a4 + b4 + (a + b)4 + c4 + d4 + (c + d)4 = (a + b)4 + (c + d)4 + (a + b + c + d)4.

14. Goins and Togbe, ”On Pythagorean,” 366.
15. Tito Piezas to Stack Exchange web forum, ”Lebesgue’s Identity,” November 10, 2012, accessed February

14, 2021, https://math.stackexchange.com/questions/921335/lebesgues-identity
16. L. J. Lander and R. R. Parkin, ”Counterexample to Euler’s Conjecture,” American Mathematical

Society 72, no. 6 (June 27, 1966): 1, https://doi.org/10.1090/S0002-9904-1966-11654-3.
17. Lee W. Jacobi and Daniel T. Madden, ”On a4 + b4 + c4 + d4,” The American Mathematical Monthly

115, no. 3 (March 2008): 226-227, https://doi.org/10.1080/00029890.2008.11920519.
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The 2nd identity allows us to rewrite this as

(a2 + ab + b2)2 + (c2 + cd + d2)2 =
(
(a + b)2 + (a + b)(c + d) + (c + d)2

)
Which is a very cleverly disguised Pythagorean triple! This form can also be parameterized
with an elliptical curve and an infinite set of solutions can be found (not shown).18

18. Jacobi and Madden, ”On a4 + b4 + c4 + d4,” 227-230.
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