Apollonian Circle Packings

Apollonian Circle Packings

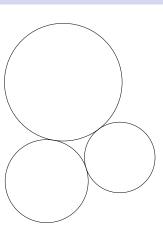
University of Colorado Boulder

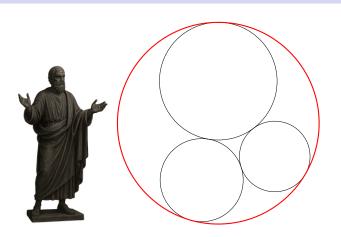
July 22, 2025

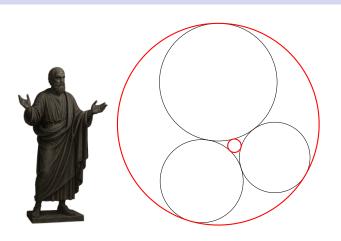
2000 years ago...

2000 years ago...

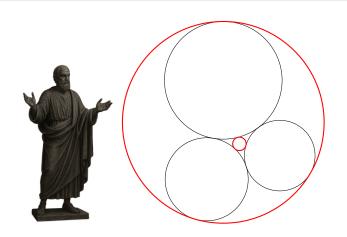
2000 years ago...





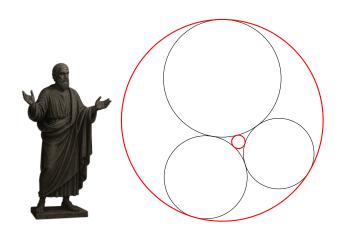


Apollonian Circle Packings



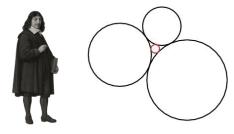
Theorem (Apollonius)

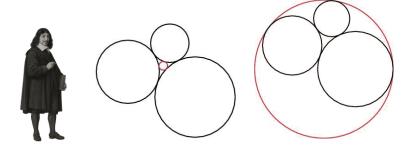
Apollonian Circle Packings



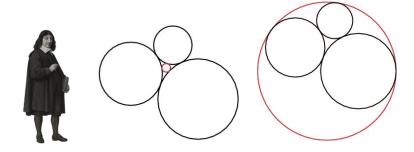
Theorem (Apollonius)

Given three mutually tangent circles, there are exactly two other circles tangent to all three.





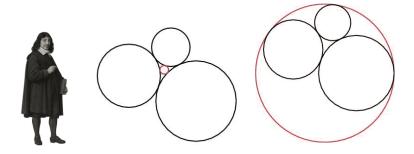
Apollonian Circle Packings



Definition

A *Descartes Quadruple* is a set of four mutually tangent circles with disjoint interiors.

Apollonian Circle Packings

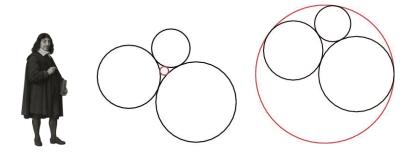


Definition

A *Descartes Quadruple* is a set of four mutually tangent circles with disjoint interiors.

Can only have at most one "inverted" circle!

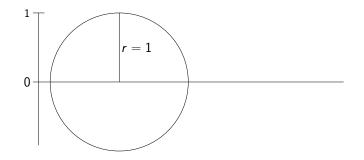
Apollonian Circle Packings

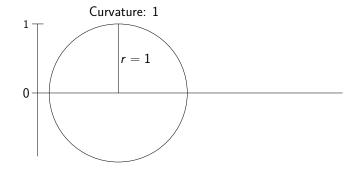


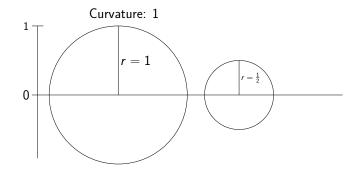
Definition

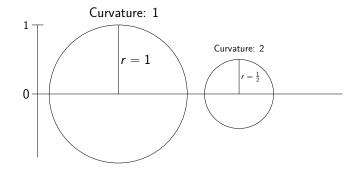
A *Descartes Quadruple* is a set of four mutually tangent circles with disjoint interiors.

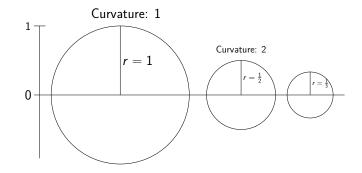
Can only have at most one "inverted" circle! \implies negative curvature

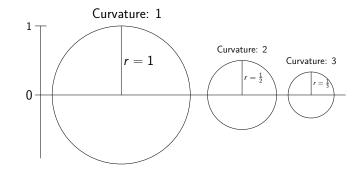


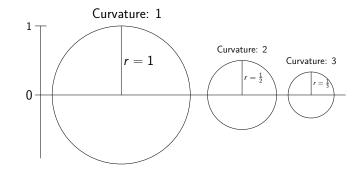


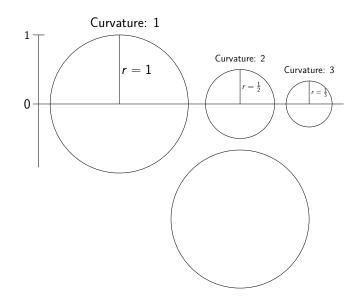


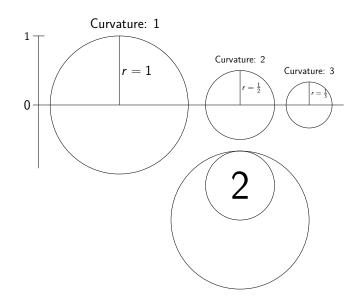


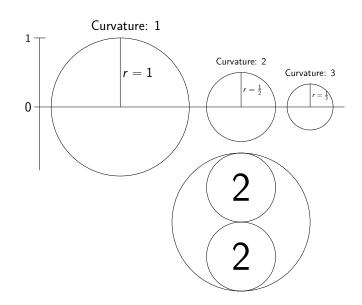


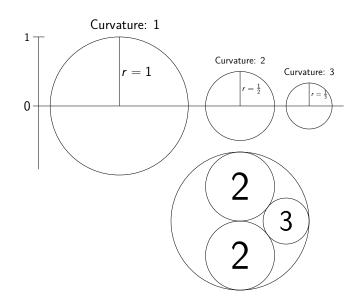


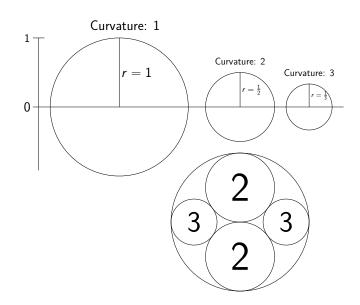


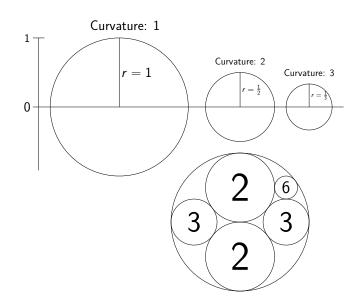


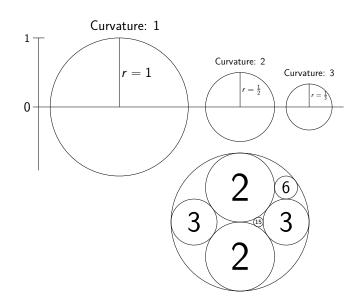












Apollonian Circle Packings

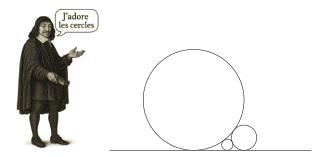
Definition

The *curvature* of a circle with radius r is defined to be 1/r.

Apollonian Circle Packings

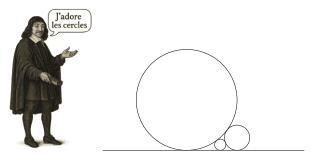
Definition

The *curvature* of a circle with radius r is defined to be 1/r.



Definition

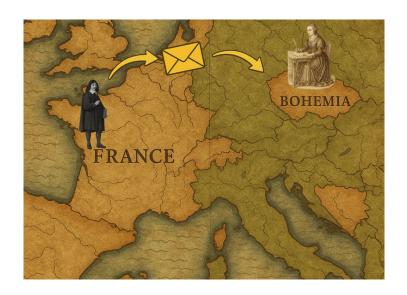
The *curvature* of a circle with radius r is defined to be 1/r.



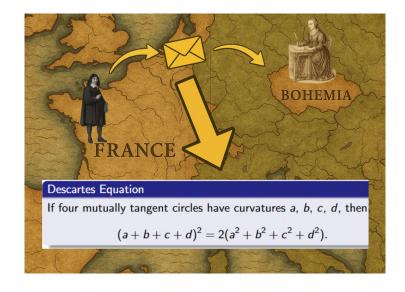
Circle with infinite radius

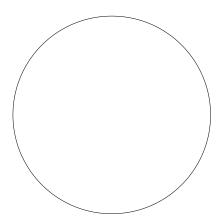
Descartes' Theorem

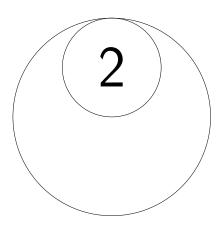
Descartes' Theorem

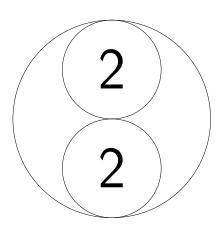


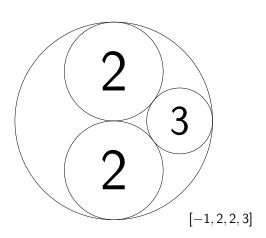
Descartes' Theorem

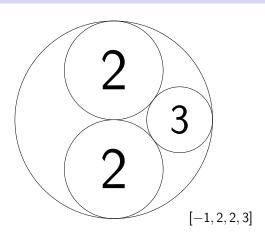


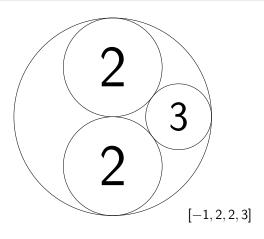




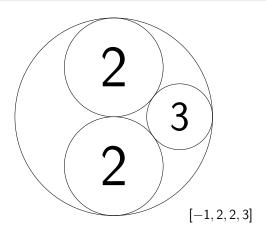






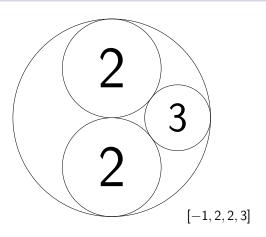


$$(-1+2+2+3)^2 = 2(-1^2+2^2+2^2+3^2)$$



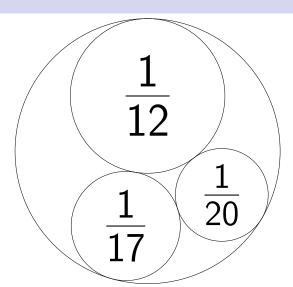
$$(-1+2+2+3)^2 = 2(-1^2+2^2+2^2+3^2)$$

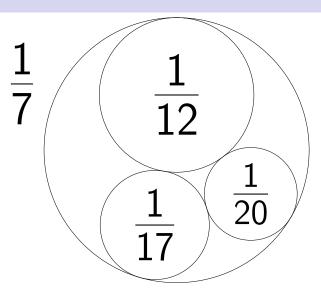
 $6^2 = 2(1+4+4+9)$

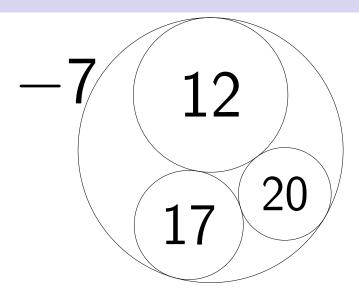


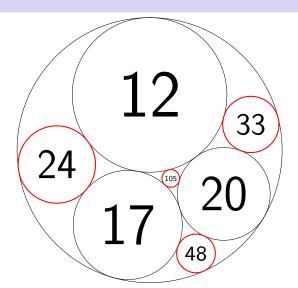
$$(-1+2+2+3)^2 = 2(-1^2+2^2+2^2+3^2)$$

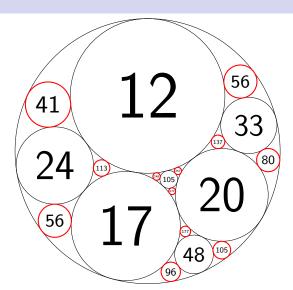
 $6^2 = 2(1+4+4+9)$
 $36 = 2*18$

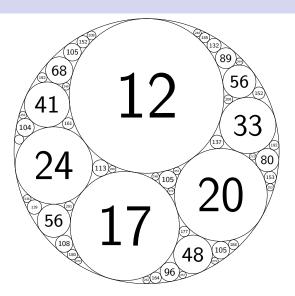


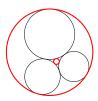


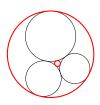




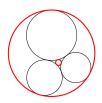








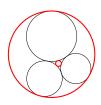
$$2(a^2 + b^2 + c^2 + d^2) - (a + b + c + d)^2 = 0$$



$$2(a^2 + b^2 + c^2 + d^2) - (a + b + c + d)^2 = 0$$

$$d^2 - 2d(a + b + c) + (a^2 + b^2 + c^2 - 2ab - 2bc - 2ac) = 0$$

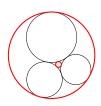
Apollonian Circle Packings



$$2(a^2 + b^2 + c^2 + d^2) - (a + b + c + d)^2 = 0$$
$$d^2 - 2d(a + b + c) + (a^2 + b^2 + c^2 - 2ab - 2bc - 2ac) = 0$$

The quadratic formula gives

Apollonian Circle Packings



$$2(a^{2} + b^{2} + c^{2} + d^{2}) - (a + b + c + d)^{2} = 0$$

$$d^{2} - 2d(a + b + c) + (a^{2} + b^{2} + c^{2} - 2ab - 2bc - 2ac) = 0$$

The quadratic formula gives

$$d = (a+b+c)$$

$$\pm \frac{\sqrt{4(a+b+c)^2 - 4(a^2+b^2+c^2-2ab-2bc-2ac)}}{2}$$

$$= a+b+c\pm 2\sqrt{ab+bc+ca}.$$

If three mutually tangent circles have curvatures a, b, and c, then the two circles of Apollonius, d and d' have curvatures

$$d = a + b + c + 2\sqrt{ab + ac + bc}$$

$$d' = a + b + c - 2\sqrt{ab + ac + bc}$$

If three mutually tangent circles have curvatures a, b, and c, then the two circles of Apollonius, d and d' have curvatures

$$d = a + b + c + 2\sqrt{ab + ac + bc}$$
$$d' = a + b + c - 2\sqrt{ab + ac + bc}$$

Moreover,
$$d + d' = 2(a + b + c)$$
.

If three mutually tangent circles have curvatures a, b, and c, then the two circles of Apollonius, d and d' have curvatures

$$d = a + b + c + 2\sqrt{ab + ac + bc}$$

$$d' = a + b + c - 2\sqrt{ab + ac + bc}$$

Moreover, d + d' = 2(a + b + c).

The Key Relation

$$d + d' = 2(a + b + c) \implies d' = 2(a + b + c) - d$$

If three mutually tangent circles have curvatures a, b, and c, then the two circles of Apollonius, d and d' have curvatures

$$d = a + b + c + 2\sqrt{ab + ac + bc}$$

$$d' = a + b + c - 2\sqrt{ab + ac + bc}$$

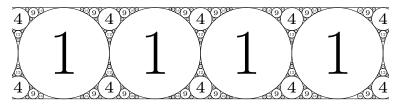
Moreover, d + d' = 2(a + b + c).

The Key Relation

$$d + d' = 2(a + b + c) \implies d' = 2(a + b + c) - d$$

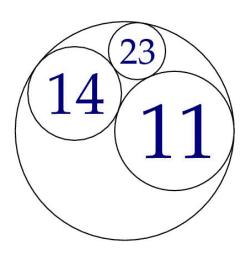
If a, b, c, d are integers, the rest are also integers!

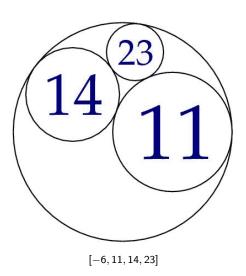
Apollonian Circle Packings



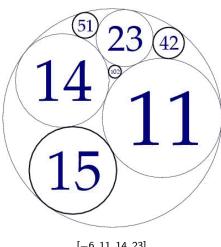
The strip packing: $\left[0,0,1,1\right]$

Apollonian Circle Packings

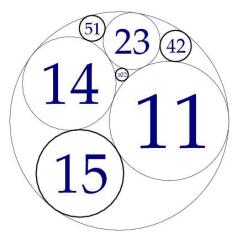




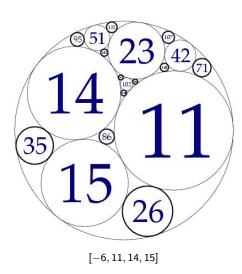
Apollonian Circle Packings

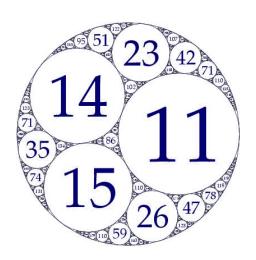


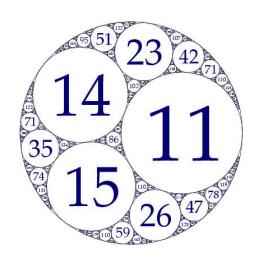
[-6, 11, 14, 23]



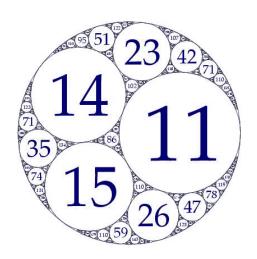
[-6, 11, 14, 23] reduces to [-6, 11, 14, 15]



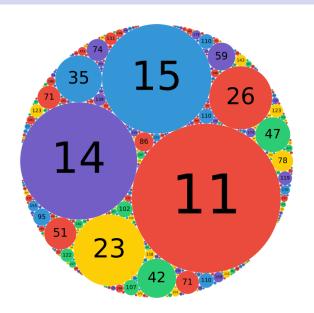


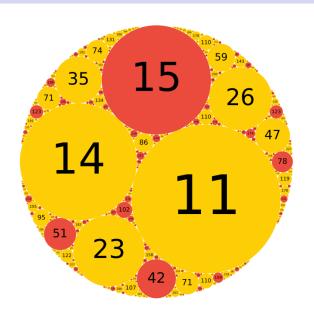


Once -6, 11, 14, 15 are set



Once -6, 11, 14, 15 are set, no room for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 17, \dots





Apollonian Circle Packings

Theorem (Fuchs)

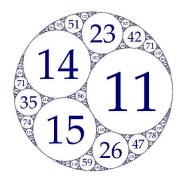
If a congruence obstruction appears, then it appears modulo 24.

Theorem (Fuchs)

If a congruence obstruction appears, then it appears modulo 24.

Туре	Allowed Residues
(6,1)	0, 1, 4, 9, 12, 16
(6,5)	0, 5, 8, 12, 20, 21
(6, 13)	0, 4, 12, 13, 16, 21
(6, 17)	0, 8, 9, 12, 17, 20
(8,7)	3, 6, 7, 10, 15, 18, 19, 22
(8, 11)	2, 3, 6, 11, 14, 15, 18, 23

Apollonian Circle Packings



[-6, 11, 14, 15]

Type	Allowed Residues
(6,1)	0, 1, 4, 9, 12, 16
(6,5)	0, 5, 8, 12, 20, 21
(6, 13)	0, 4, 12, 13, 16, 21
(6, 17)	0, 8, 9, 12, 17, 20
(8,7)	3, 6, 7, 10, 15, 18, 19, 22
(8, 11)	2, 3, 6, 11, 14, 15, 18, 23

Missing Curvatures?

Missing Curvatures?

Fuchs-Sanden computed curvatures up to:

$$10^8$$
 for $[-1, 2, 2, 3]$ $5 \cdot 10^8$ for $[-11, 21, 24, 28]$

Missing Curvatures?

Fuchs-Sanden computed curvatures up to:

$$10^8$$
 for $[-1,2,2,3]$ $5\cdot 10^8$ for $[-11,21,24,28]$

and observed for [-11,21,24,28], there were still a small number (up to 0.013%) of missing curvatures in the range $\left(4\cdot10^8,5\cdot10^8\right)$ for residue classes 0,4,12,16 mod 24.

Local-to-global

Local-to-global

Apollonian Circle Packings

Conjecture. (Graham-Lagarias-Mallows-Wilks-Yan 2003, Fuchs-Sanden, 2011)

In a primitive integral Apollonian circle packing, curvatures satisfy a congruence condition modulo 24, and all sufficiently large integers satisfying this condition appear.

Local-to-global

Apollonian Circle Packings

Conjecture. (Graham-Lagarias-Mallows-Wilks-Yan 2003, Fuchs-Sanden, 2011)

In a primitive integral Apollonian circle packing, curvatures satisfy a congruence condition modulo 24, and all sufficiently large integers satisfying this condition appear.

Theorem (Bourgain-Kontorovich, 2014)

The number of missing curvatures up to N is at most $O(N^{1-\varepsilon})$ for some computable $\varepsilon > 0$.

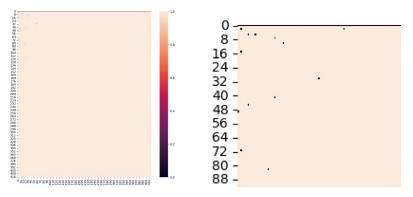
 $1. \ \mbox{Fix a pair of curvatures, and study what packings contain them.}$

- $1. \ \mbox{Fix a pair of curvatures, and study what packings contain them.}$
- 2. Plot: for an admissible pair of residue classes modulo 24, black dot if no packing has that pair.

- 1. Fix a pair of curvatures, and study what packings contain them.
- 2. Plot: for an admissible pair of residue classes modulo 24, black dot if no packing has that pair.
- 3. Local-global: finitely many black dots on any row or column.

Typical graph

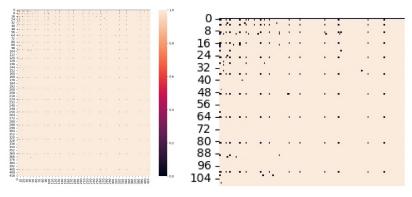
Typical graph



Residue classes 0 (mod 24) and 12 (mod 24) (Summer Haag)

One weird graph

One weird graph

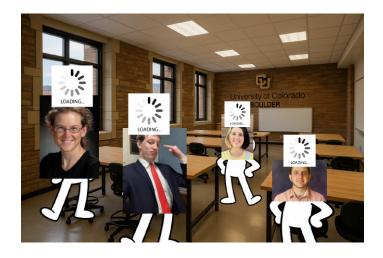


Residue classes 0 (mod 24) and 8 (mod 24) (Summer Haag)

Where's the bug?

Where's the bug?

Where's the bug?



No bug-The conjecture is false!

No bug-The conjecture is false!

Apollonian Circle Packings

Theorem (Haag-Kertzer-Rickards-Stange)

The packing [-3,5,8,8] has no square curvatures.

Apollonian Circle Packings

Apollonian Circle Packings

There is a bijection between

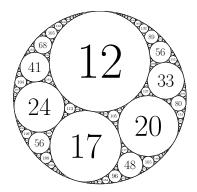
1. curvatures of circles tangent to fixed outer circle of curvature, and

Apollonian Circle Packings

- 1. curvatures of circles tangent to fixed outer circle of curvature, and
- 2. $\{f_a(x,y) a : \gcd(x,y) = 1\}$

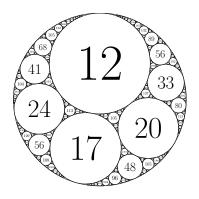
Apollonian Circle Packings

- 1. curvatures of circles tangent to fixed outer circle of curvature, and
- 2. $\{f_a(x,y) a : \gcd(x,y) = 1\}$
- 3. ex. in [-7, 12, 17, 20], fix 17 and 20:



Apollonian Circle Packings

- 1. curvatures of circles tangent to fixed outer circle of curvature, and
- 2. $\{f_a(x,y) a : \gcd(x,y) = 1\}$
- 3. ex. in [-7, 12, 17, 20], fix 17 and 20:



	<u></u>
X	$f(x) = 29x^2 - 56x + 20$
-1	105
0	20
1	-7
2	24
3	113

New idea

1. All curvatures n in [-3,5,8,8] have $n \equiv 0,1 \pmod{4}$.

- 1. All curvatures n in [-3,5,8,8] have $n \equiv 0,1 \pmod{4}$.
- 2. Fix circle of curvature n; tangent curvatures f(x,y) n

- 1. All curvatures n in [-3,5,8,8] have $n \equiv 0,1 \pmod{4}$.
- 2. Fix circle of curvature n; tangent curvatures f(x, y) n
- 3. Modulo n and equivalence, values are Ax^2 : only quadratic residues or only non-residues.

- 1. All curvatures n in [-3,5,8,8] have $n \equiv 0,1 \pmod{4}$.
- 2. Fix circle of curvature n; tangent curvatures f(x, y) n
- 3. Modulo n and equivalence, values are Ax^2 : only quadratic residues or only non-residues.
- 4. Define $\chi_2(\mathcal{C}) = 1$ if solution exists, -1 otherwise.

New idea

1. Suppose that $\mathcal{C}_1,\mathcal{C}_2$ in a packing are tangent, having non-zero coprime curvatures a and b respectively.

- 1. Suppose that C_1, C_2 in a packing are tangent, having non-zero coprime curvatures a and b respectively.
- 2. Then

$$\chi_2(\mathcal{C}_1)\chi_2(\mathcal{C}_2) = 1 \implies \chi_2(\mathcal{C}_1) = \chi_2(\mathcal{C}_2).$$

- 1. Suppose that C_1, C_2 in a packing are tangent, having non-zero coprime curvatures a and b respectively.
- 2. Then

$$\chi_2(\mathcal{C}_1)\chi_2(\mathcal{C}_2) = 1 \implies \chi_2(\mathcal{C}_1) = \chi_2(\mathcal{C}_2).$$

3. Any two circles in the packing are connected by a path of pairwise coprime curvatures.

- 1. Suppose that C_1, C_2 in a packing are tangent, having non-zero coprime curvatures a and b respectively.
- 2. Then

$$\chi_2(\mathcal{C}_1)\chi_2(\mathcal{C}_2)=1 \implies \chi_2(\mathcal{C}_1)=\chi_2(\mathcal{C}_2).$$

- Any two circles in the packing are connected by a path of pairwise coprime curvatures.
- 4. So $\chi_2(\mathcal{C})$ is independent of the choice of circle \mathcal{C} .

Apollonian Circle Packings

1. In base quadruple [-3, 5, 8, 8], compute

 $\chi_2(a \text{ packing}) = is 8 \text{ a quadratic residue mod 5?}$

Apollonian Circle Packings

1. In base quadruple [-3, 5, 8, 8], compute

 $\chi_2(a \text{ packing}) = \text{is 8 a quadratic residue mod 5?} \implies \text{no } = -1.$

Apollonian Circle Packings

1. In base quadruple [-3, 5, 8, 8], compute

$$\chi_2(\text{a packing}) = \text{is 8 a quadratic residue mod 5?} \implies \text{no } = -1.$$

2. So no circle can be tangent to a square.

$$\chi_2:\{\mathsf{circles}\} o \{\pm 1\}$$
 constant across a packing

$$\chi_2:\{\mathsf{circles}\} o \{\pm 1\}$$
 constant across a packing

$$\chi_4$$
: {circles in packing of type (6,1) or (6,17)} $o \{1,i,-1,-i\}$ satisfies $\chi_4(\mathcal{C})^2=\chi_2(\mathcal{C})$, constant across a packing.

Apollonian Circle Packings

$$\chi_2:\{\mathsf{circles}\} o \{\pm 1\}$$
 constant across a packing

$$\chi_4$$
: {circles in packing of type $(6,1)$ or $(6,17)$ } $o \{1,i,-1,-i\}$ satisfies $\chi_4(\mathcal{C})^2=\chi_2(\mathcal{C})$, constant across a packing.

The values of χ_2 and χ_4 determine the quadratic and quartic obstructions respectively.

The New Conjecture

The New Conjecture

Apollonian Circle Packings

The New Conjecture

The type of a packing implies the existence of certain quadratic and quartic obstructions:

The New Conjecture

Apollonian Circle Packings

The New Conjecture

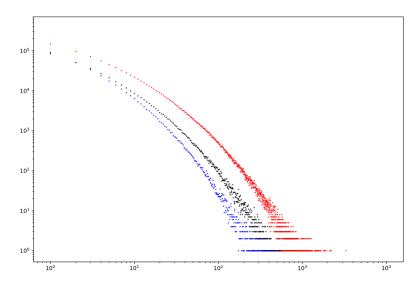
The type of a packing implies the existence of certain quadratic and quartic obstructions:

Туре	n ² Obstructions	n⁴ Obstructions	L-G false	L-G open
(6,1,1,-1)		$n^4, 4n^4, 9n^4, 36n^4$	0, 1, 4, 9, 12, 16	
(6, 1, -1)	$n^2, 2n^2, 3n^2, 6n^2$		0, 1, 4, 9, 12, 16	
(6, 5, 1)	$2n^2, 3n^2$		0, 8, 12	5, 20, 21
(6,5,-1)	n^2 , $6n^2$		0, 12	5, 8, 20, 21
(6, 13, 1)	$2n^2, 6n^2$		0	4, 12, 13, 16, 21
(6, 13, -1)	$n^2, 3n^2$		0, 4, 12, 16	13, 21
(6, 17, 1, 1)	$3n^2, 6n^2$	9n ⁴ , 36n ⁴	0, 9, 12	8, 17, 20
(6, 17, 1, -1)	$3n^2, 6n^2$	$n^4, 4n^4$	0, 9, 12	8, 17, 20
(6, 17, -1)	$n^2, 2n^2$		0, 8, 9, 12	17, 20
(8, 7, 1)	$3n^2, 6n^2$		3,6	7, 10, 15, 18, 19, 22
(8,7,-1)	2 <i>n</i> ²		18	3, 6, 7, 10, 15, 19, 22
(8, 11, -1)	$2n^2, 3n^2, 6n^2$		2, 3, 6, 18	11, 14, 15, 23

Sporadic curvatures dropping off

Sporadic curvatures dropping off

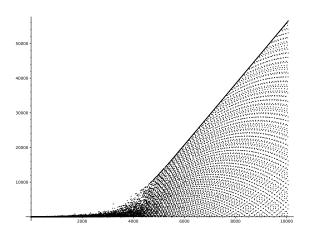
Apollonian Circle Packings



A loglog plot of the probability a curvature is sporadic, as curvature size increases.

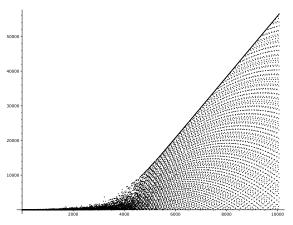
Successive differences

Successive differences



Successive differences

Apollonian Circle Packings



Successive differences of missing curvatures in the packing [-4,5,20,21]. The quadratic families $2n^2$ and $3n^2$ begin to predominate (the sporadic set has 3659 elements $< 10^{10}$, and occur increasingly sparsely.)

Thank You!

