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Theorem (Apollonius)

Given three mutually tangent circles, there are exactly two other circles
tangent to all three.
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Definition

A Descartes Quadruple is a set of four mutually tangent circles with disjoint
interiors.
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Definition

A Descartes Quadruple is a set of four mutually tangent circles with disjoint
interiors.

Can only have at most one “inverted” circle! = negative curvature
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Definition

The curvature of a circle with radius r is defined to be 1/r.

Circle with infinite radius
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(—-142+42+3)? = 2(-1°+224+22+3%)
6° = 2(1+4+4+09)
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[_17 27 27 3]

(—-142+42+3)? = 2(-1°+224+22+3%)
6° 2(14+44+449)
36 = 2x18
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2(®+ b+ +d°) —(a+tb+c+d)’ = 0
d*—2d(a+b+c)+ (a®+ b* + c® —2ab—2bc —2ac) = 0
The quadratic formula gives

d=(a+b+c)

L \/4(a+b+c)274(a2+b2+c2723b72bc72ac)

2
=a+ b+ c+t2vab+ bc+ ca.
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If three mutually tangent circles have curvatures a, b, and c, then the two
circles of Apollonius, d and d’ have curvatures

d=a+ b+ c+2vab+ ac+ bc
d =a+b+c—2Vab+ ac+ bc
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If three mutually tangent circles have curvatures a, b, and c, then the two
circles of Apollonius, d and d’ have curvatures

d=a+ b+ c+2vab+ ac+ bc
d =a+b+c—2Vab+ ac+ bc

Moreover, d +d' = 2(a+ b + c).

The Key Relation
d+d =2(a+b+c) = d =2a+b+c)—d

If a, b, c,d are integers, the rest are also integers!
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The strip packing: [0,0,1,1]




Apollonian Circle Packings

Apollonian
Circle
Packings




Apollonian Circle Packings

Apollonian
Circle
Packings

[—6,11,14, 23]



Apollonian Circle Packings

[—6,11,14, 23]



Apollonian Circle Packings

Apollonian

e
Packings

[—6,11,14,23] reduces to [—6,11,14,15]
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Once —6,11, 14,15 are set, no room for 1, 2, 3, 4,5, 6, 7, 8, 9, 10, 12, 13,
16, 17, ...
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If a congruence obstruction appears, then it appears modulo 24.
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Theorem (Fuchs)

If a congruence obstruction appears, then it appears modulo 24.

Type Allowed Residues
(6,1) 0,1,4,9,12,16
(6,5) 0,5,8, 12, 20, 21
(6,13) 0,4,12,13,16,21
(6,17) 0,8,9,12,17,20
(8,7) | 3,6,7,10,15,18,19,22
(8,11) | 2,3,6,11,14,15,18,23
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[-6,11,14,15]

Allowed Residues

Type

(6,1) 0,1,4,9,12,16
(6,5) 0,5,8,12,20,21
(6,13) 0,4,12,13,16,21
(6,17) [ 0,8,9,12,17,20
(8, 7) 3,6,7,10,15,18,19,22
(8,11) | 2,3,6,11,14,15,18,23







Fuchs-Sanden computed curvatures up to:

10 for [-1,2,2, 3]
5-10° for [—11,21,24, 28]
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Fuchs-Sanden computed curvatures up to:
10° for [-1,2,2,3]
5.10° for [—11,21,24,28]
and observed for [—11,21, 24, 28], there were still a small number (up to

0.013%) of missing curvatures in the range (4~ 108,5 - 108) for residue classes
0,4,12,16 mod 24.
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Conjecture. (Graham-Lagarias-Mallows-Wilks-Yan 2003, Fuchs-Sanden, 2011)

In a primitive integral Apollonian circle packing, curvatures satisfy a
congruence condition modulo 24, and all sufficiently large integers satisfying
this condition appear.
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Conjecture. (Graham-Lagarias-Mallows-Wilks-Yan 2003, Fuchs-Sanden, 2011)

In a primitive integral Apollonian circle packing, curvatures satisfy a
congruence condition modulo 24, and all sufficiently large integers satisfying
this condition appear.

Theorem (Bourgain-Kontorovich, 2014)

The number of missing curvatures up to N is at most O(N'~¢) for some
computable € > 0.
















1. Fix a pair of curvatures, and study what packings contain them.
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1. Fix a pair of curvatures, and study what packings contain them.

2. Plot: for an admissible pair of residue classes modulo 24, black dot if no
packing has that pair.
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1. Fix a pair of curvatures, and study what packings contain them.

2. Plot: for an admissible pair of residue classes modulo 24, black dot if no
packing has that pair.

3. Local-global: finitely many black dots on any row or column.






Residue classes 0 (mod 24) and 12 (mod 24) (Summer Haag)






Residue classes 0 (mod 24) and 8 (mod 24) (Summer Haag)















No bug—The conjecture is false!
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Theorem (Haag-Kertzer-Rickards-Stange)

The packing [—3,5,8,8] has no square curvatures.
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3. ex. in [-7,12,17,20], fix 17 and 20:







1. All curvatures n in [-3,5,8,8] have n =0,1 (mod 4).
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. Fix circle of curvature n; tangent curvatures f(x,y) — n

. Modulo n and equivalence, values are Ax?: only quadratic residues or
only non-residues.
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1. All curvatures n in [—3,5,8,8] have n = 0,1 (mod 4).
2. Fix circle of curvature n; tangent curvatures f(x,y) — n

3. Modulo n and equivalence, values are Ax?: only quadratic residues or
only non-residues.

4. Define x2(C) = 1 if solution exists, —1 otherwise.



1. Suppose that C1,Cs in a packing are tangent, having non-zero coprime
curvatures a and b respectively.
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1. Suppose that C1,Cs in a packing are tangent, having non-zero coprime
curvatures a and b respectively.
2. Then
x2(C1)x2(C2) =1 = x2(C1) = x2(C2).

3. Any two circles in the packing are connected by a path of pairwise
coprime curvatures.
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1. Suppose that C1,Cs in a packing are tangent, having non-zero coprime
curvatures a and b respectively.
2. Then
x2(C1)x2(C2) =1 = x2(C1) = x2(C2).

3. Any two circles in the packing are connected by a path of pairwise
coprime curvatures.

4. So x2(C) is independent of the choice of circle C.
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X2(a packing) = is 8 a quadratic residue mod 57
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There are no squares in the packing

1. In base quadruple [-3,5, 8, 8], compute

X2(a packing) = is 8 a quadratic residue mod 5?7 —>

2. So no circle can be tangent to a square.
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x2 : {circles} — {£1}

constant across a packing

xa : {circles in packing of type (6,1) or (6,17)} — {1,i,—1,—i}

satisfies x4(C)* = x2(C),
constant across a packing.
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x2 : {circles} — {£1}

constant across a packing

xa : {circles in packing of type (6,1) or (6,17)} — {1,i,—1,—i}
satisfies x4(C)? = x2(C),

constant across a packing.

The values of x2 and xa determine the quadratic and quartic obstructions
respectively.
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The type of a packing implies the existence of certain quadratic and quartic
obstructions:
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The New Conjecture

The type of a packing implies the existence of certain quadratic and quartic
obstructions:

Type n? Obstructions | n* Obstructions L-G false L-G open
(6,1,1,-1) n®,4n* 9n*,36n* | 0,1,4,9,12,16

(6,1,-1) n?,2n%,3n%,6n° 0,1,4,9,12,16

(6,5,1) 2n%,3n? 0,8,12 5,20, 21
(6,5,-1) n?,6n 0,12 5,8,20,21
(6,13,1) 2n?,6n° 0 4,12,13,16,21
(6,13, 1) n?,3n’ 0,4,12,16 13,21
(6,17,1,1) 3n2,6n° 9n%,36n" 0,9,12 8,17,20
(6,17,1,-1) 3n,6n° n®, 4n* 0,9,12 8,17,20
(6,17,-1) n?,2n? 0,8,9,12 17,20
(8,7,1) 3n?,6n° 3,6 7,10,15,18,19,22
(8,7,-1) 2n? 18 3,6,7,10,15,19,22
(8,11, -1) 2n?,3n%,6n% 2,3,6,18 11,14,15,23







Sporadic curvatures dropping off
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A loglog plot of the probability a curvature is sporadic, as curvature size
increases.
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Successive differences of missing curvatures in the packing [—4, 5, 20, 21].
The quadratic families 2n* and 3n? begin to predominate (the sporadic set has
3659 elements < 10'°, and occur increasingly sparsely.)
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