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1 Distances Between Lattice Points

We will first motivate our exploration into the sums of squares and r-gonal numbers with an
interesting geometric problem–finding the number of distinct nonnegative distances between
lattice points in a grid.

Definition 1.1. An n×n grid is the set of all points (x, y) such that x, y ∈ Z and 0 ≤ x, y ≤ n.

Lemma 1.2
The number of distinct nonnegative distances between two lattice points on an n× n
grid is bound above by

(
n+2
2

)
.

Proof. Consider two lattice points (a1, b1) and (a2, b2) on an n×n grid. The distance between
(a1, b1) and (a2, b2) depends only on the horizontal and vertical distance between the two
points; namely, |a1 − a2| and |b1 − b2|. Let the horizontal distance be H and the vertical
distance be V . We know that

0 ≤ a1, a2, b1, b2 ≤ n.

As a result,

0 ≤ |a1 − a2| and |b1 − b2| ≤ n.

If |a1 − a2| = |b1 − b2|, we have a total of n+ 1 possible pairs (H,V ). If |a1 − a2| ≠ |b1 − b2|,
notice that swapping the values of H and V does not affect the distance. Hence, we can
divide the number of pairs (H,V ) by 2 to get n(n+ 1)/2 distances. Adding our counts, we
have a maximum of

n+ 1 +
n(n+ 1)

2
=

(n+ 2)(n+ 1)

2
=

(
n+ 2

2

)
distinct nonnegative distances between two lattice points on an n× n grid. This is an upper
bound and not an exact count because some distances can be counted by multiple pairs
(H,V ).
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Total distinct distances: 20

Remark 1.3. In the grid above, 25 is counted by (0, 5) and (3, 4), so there are only 20 distinct
distances on a 5 × 5 grid. This is the smallest grid where our upper bound is not the exact
count. To answer this question, we must determine the number of ways to express a number as
the sum of two squares...

2 Sums of Two Squares
We will now fully characterize the natural numbers that can be expressed as the sum of two
squares, as well as the number of distinct expressions possible. We begin by constructing a
multiplicatively closed subset of the natural numbers whose elements are all expressible as
the sum of two squares.

Proposition 2.1 (Diophantus-Brahmagupta-Fibonacci-Kertzer Identity)
For all a, b, c, d ∈ Z, we have that

(a2 + b2)(c2 + d2) = (ad+ bc)2 + (ac− bd)2.

Proof. Let a, b, c, d ∈ Z. Expanding yields

(a2 + b2)(c2 + d)2 = a2c2 + b2d2 + a2d2 + b2c2

= a2c2 + 2abcd+ b2d2 + a2d2 − 2abcd+ b2c2

= (ac+ bd)2 + (ad− bc)2.

Two useful results follow:
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Corollary 2.1.1
The set of naturals that are expressible as the sum of two squares is closed under
multiplication.

Corollary 2.1.2
For all x, y ∈ Z[i], we have that N(xy) = N(x)N(y).

We begin with the first result, which reduces the problem of constructing the subset to
determining which primes are expressible as the sum of two squares. Note that all even
primes are expressible as the sum of two squares:

Remark 2.2. 2 = 12 + 12.

The only primes that remain are odd primes, which can be split into two groups by their
remainders mod 4. The primes that are 3 mod 4 cannot be expressed as the sum of two
squares due to the following two lemmas.

Lemma 2.3
Let k ∈ Z. Then k2 is 0 or 1 mod 4.

Proof. Let k ∈ Z. If k is even, then k = 2k1 for some k1 ∈ Z. Squaring gives

k2 ≡ (2k1)
2 ≡ 4k2

1 ≡ 0 (mod 4).

Now, if k is odd, then k = 2k1 + 1 for some k1 ∈ Z. Squaring gives

k2 ≡ (2k1 + 1)2 ≡ 4k2
1 + 4k1 + 1 ≡ 1 (mod 4).

Lemma 2.4
Let n ∈ N. If n ≡ 3 (mod 4), then n cannot be expressed as a sum of two squares.

Proof. Let k ∈ Z. By Lemma 2.3, k2 is 0 or 1 mod 4. Thus, the sum of two squares can only
be 0 + 0 = 0, 0 + 1 = 1 + 0 = 1, or 1 + 1 = 2 mod 4.

On the other hand, every prime that is 1 mod 4 can be expressed as the sum of two
squares.

Theorem 2.5
If p is a prime and p ≡ 1 (mod 4), then there exist a, b ∈ Z such that p = a2 + b2.

We begin by proving supporting lemmas.
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Lemma 2.6
Given a prime p and a unit u ∈ Up, there exists a unique u−1 ∈ Up such that uu−1 = 1.

Proof. By the definition of a unit, there exists some u−1 ∈ Up such that uu−1 = 1. Now,
assume that uv = 1. Then, v = u−1uv = u−1.

Lemma 2.7
Given u ∈ Up, we have that u = u−1 if and only if u = ±1.

Proof. If u = ±1, then u · u = u2 = (±1)2 = 1, so u−1 = u by Lemma 2.6.

Conversely, if u = u−1, then 1 ≡ uu−1 ≡ u2 (mod p). Subtracting 1 from both sides and
factoring gives

(u− 1)(u+ 1) ≡ u2 − 1 ≡ 0 (mod p).

Since p is prime, one of u− 1 and u+ 1 must be divisible by p, forcing u to be 1 or −1.

Lemma 2.8 (Wilson’s Theorem)
For all primes p, we have that (p− 1)! ≡ −1 (mod p).

Proof. For p = 2, the statement is true, as 1! ≡ 1 ≡ −1 (mod 2). Since 2 is the only
even prime, we may now assume p is odd. Now, because p is prime, each of 1, 2, . . . , p− 1
is relatively prime to p; consequently, all of them are units in Zp. Now, take the units
2, 3, . . . , p− 2. None of the units are 1 or −1, so Lemmas 2.6 and 2.7 imply that each of them
has a unique multiplicative inverse that is neither 1 nor −1. As a result, due to p− 3 being
even, we may pair up multiplicative inverses to get that

(p− 1)! ≡ (p− 1)(p− 2) · · · (2)(1) ≡ (p− 1)
(
1

p−3
2

)
≡ −1 (mod p).

Lemma 2.9
Let p be an odd prime. There exists a j ∈ Up such that j2 ≡ −1 (mod p) if and only if
p ≡ 1 (mod 4).

Proof. If p ≡ 1 (mod 4), we have that p−1
2

is even. Then, it follows from Lemma 2.8 that:

(p− 1)! ≡ (p− 1) (p− 2) · · ·
(
p+ 1

2

)(
p− 1

2

)
· · · (2)(1)

≡ (−1)(−2) . . .

(
−p− 1

2

)(
p− 1

2

)
· · · (2)(1)

≡
(
−12

) (
−22

)
· · ·

(
−
(
p− 1

2

)2
)
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≡ (−1)
p−1
2
(
12
) (

22
)
· · ·

((
p− 1

2

)2
)

≡ (1)

((
p− 1

2

)
!

)2

≡
((

p− 1

2

)
!

)2

Taking j =
(
p−1
2

)
! thus satisfies the lemma statement.

Now, if there exists a j ∈ Up such that j2 ≡ −1 (mod 4), it follows that the order of j is 4,
as j4 ≡ 1 (mod p) and no smaller power of j produces 1. Then, because jp−1 ≡ 1 (mod p)
by Fermat’s Little Theorem, we have that 4|(p− 1), implying that p is 1 mod 4.

We are now ready to show that all primes that are 1 mod 4 can be represented as the sum of
two squares.

Proof of Theorem 2.5. From Lemma 2.9, there exists j ∈ Up such that j2 ≡ −1 (mod p).
Two cases arise based on the size of j.

Case 1: 1 ≤ j ≤ √
p

If j ≤ √
p, then j2 + 1 ≤ p+ 1. As j is a positive integer and j2 + 1 ≡ 0 (mod p), it follows

that j2 + 1 must equal p. Thus, a = j and b = 1 satisfy a2 + b2 = p.

Case 2: j >
√
p

Let q = ⌊√p⌋. The smallest prime that is 1 mod 4 is 5, so we may assume p ≥ 5 and q ≥ 2.
From the definition of floor, we have that

k ≤√
p < k + 1

which when squared yields

k2 ≤ p < k2 + 2k + 1.

Since p is prime and an integer, k(k + 2) = k2 + 2k ̸= p. Thus, we may improve the upper
bound on p to

p ≤ k2 + 2k − 1.

Now, for each 1 ≤ i ≤ k, let xi ≡ ij (mod p) and 0 ≤ xi < p. We have for each i that

i2(j2 + 1) ≡ i2j2 + i2 ≡ x2
i + i2 ≡ 0 (mod p).

Then, if there exists a xi ≤ k, the size of x2
i + i2 can be bounded:

0 < x2
i + i2 ≤ 2k2 < 2k2 + 4 = 2p.

As x2
i + i2 ≡ 0 (mod p), the inequality forces x2

i + i2 to be p. Taking a = xi and b = i
concludes; therefore, we may assume that all xi are at least k + 1.
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Next, if there exists a xi ≥ p − k, we have that xi ≡ −i′ (mod p) for some 1 ≤ i′ ≤ k. It
follows that

xi ≡ −i′ (mod p)

ij ≡ (j2)i′ (mod p)

ij4 ≡ i′j5 (mod p)

i ≡ i′j (mod p)

i ≡ xi′ (mod p).

However, because 1 ≤ i ≤ k implies that 1 ≤ xi′ ≤ k, this contradicts our earlier assumption.
Consequently, we may assume that k + 1 ≤ xi ≤ p− k − 1 for each xi.

Finally, using the Pigeonhole Principle with the k xi’s and the range they all lie in, we have
that there exist distinct xi and x′

i such that

|xi − xi′| ≤
p− k − 1− (k + 1)

k − 1

≤ p− 2k − 2

k − 1

≤ (k2 + 2k − 1)− 2k − 2

k − 1

≤ k2 − 3

k − 1

<
k2 − 1

k − 1

< k + 1

≤ k

Without loss of generality, let i > i′ and 1 ≤ |xi−x′
i| = k′ ≤ k. Then, ji− ji′ ≡ ±k′ (mod p),

so j(i− i′) ≡ ±k′ (mod p). Thus, xi−i′ = k′ or p− k′. Since p− k′ ≥ p− k > p− k − 1, we
have that xi−i′ must be k′. Taking a = k′ and b = i− i′ thus concludes.

Theorem 2.10
A natural k can be expressed as the sum of two squares if and only if

k = 2ℓ
∏

q≡3 mod 4

q2
∏

p≡1 mod 4

p,

where ℓ ∈ Z≥0. Here, p and q are prime.

Proof. Let p be a 1 mod 4 prime and q be a 3 mod 4 prime.

(⇒) All numbers of the form of p, q2, and 2 work: p by Theorem 2.5, 02 + q2 = q2, and
12 + 12 = 2. Then all numbers that are the product of 2’s, p’s, and q2’s are achievable by
Corollary 2.1.1, as desired.

(⇐) Take any odd prime r that divides k. We will show that if r2 ∤ k, then r ≡ 1 mod 4. This
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means that all k that can be expressed as the sum of two squares are of the claimed form.

Write k = a2 + b2. If r | gcd(a, b), then r | a, a | b, so r2 | a2, r2 | b2, and r2 | a2 + b2 = k. But
r2 | k, so we discard this case. Note that if r divides one of a and b then r must divide the
other, as r | k. Since r does not divide both, we may now assume that r ∤ a, r ∤ b.
Then take a2 = k − b2 mod r to get a2 ≡ −b2 mod r. Multiplying by (b−1)2 on both
sides gives (ab−1)2 ≡ −1 mod r. Since −1 ̸≡ 1 (mod r), ordr(ab

−1) ̸= 1, 2. Squaring gives
(ab−1)4 ≡ 1 mod r, so ordr(ab

−1) | 4. Thus, ordr(ab
−1) = 4. Therefore, 4 ∤ r − 1, so

r ≡ 1 mod 4 as needed.

Lemma 2.11
In all three of the following cases, α is prime in Z[i].

(a) If N(α) = p where p is a 1 mod 4 prime, then there exist exactly two primes
α ∈ Z[i] (up to units), and these are α and α.

(b) If p = 2, only α = 1 + i works.

(c) If N(α) = q2 where q is a 3 mod 4 prime, then the only α ∈ Z[i] is α = q.

Proof. Let α = a+ bi.

(a) By Theorem 2.5, there exists some β ∈ Z[i] with N(β) = p. Then β must be prime,
otherwise write p = N(β) = N(a)N(b) with a, b ∈ Z[i] non-unit, which contradicts the
primality of p, since N(a), N(b) > 1. Likewise, α is prime.

We know N(β) | N(α). We may also write ββ | αα, which implies β | αα. Then by FTA,
since β is prime, either β | α or β | α. N(α) = N(β) = N(β), so α = β or α = β, as needed.

(b) We require N(α) = a2 + b2 = 2, which is only possible when α = 1 + i (and associates).

(c) If α is not prime, write q2 = N(α) = N(a)N(b) for some non-unit a, b ∈ Z[i]. Then
N(a) = N(b) = q since q is prime. Let a = x+ yi, so that x2 + y2 = q. This is impossible
since q is 3 mod 4. Take x2 + y2 = q mod 4 to find x2 + y2 ≡ mod 4. Thus α is prime.

Now to show there is only one α. Let α = a + bi. Then we know that a2 + b2 = q2 from
taking norms. Using a similar method to Theorem 2.10, and since q ≡ 3 mod 4, we must
have that q | gcd(a, b). The only possible solution is then (a, b) = (q, 0) and its permutations
and negations. Thus, α = q up to multiplication by units.

Lemma 2.12
The three types of norms in Lemma 2.11 are the only ones that correspond to primes in
Z[i]. In other words, if N(α) ̸= 2, p, q2, then α cannot be prime.

Proof. Let N(α) = a1a2 · · · an, where a1, . . . , an ∈ Z are of the form 2, p, or q2. Then by
Lemma 2.11, we may find primes α1, . . . , αn ∈ Z[i] with N(αi) = ai for all 1 ≤ i ≤ n. Thus,
α = α1 · · ·αn, so α is not prime, since none of the αi are units.
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Theorem 2.13
Let

k = 2ℓ
∏

q≡3 mod 4

q2
∏

p≡1 mod 4

p

where ℓ ∈ Z≥0. If the number of ordered pairs (a, b) ∈ Z2 that satisfy a2 + b2 = k is
defined as r(k), then

r(k)/4 = τ

( ∏
p≡1 mod 4

p

)
.

Proof. Let p be a 1 mod 4 prime and q be a 3 mod 4 prime, and let

m =
∏

1 mod 4

p.

Note that r(k) counts the number of α ∈ Z[i] such that N(α) = k. There are exactly r(k)/4
solutions α to N(α) = k up to multiplication by units, since there are 4 units in Z[i].
Now prime factorize α in Z[i]. Since norm in Z[i] is multiplicative by Corollary 2.1.2, we
have that

N(α) = N

(∏
i

αi

)
=
∏
i

N(αi),

where each αi is prime. This is unique by UPF in Z[i]. Each N(αi) is p, q2, or 2, by
Lemma 2.12.

Now break the product in terms of the prime factors of N(α) to find that

N(α) =
∏
i,

N(αi)=p

N(αi)
∏
i,

N(αi)=q2

N(αi)
∏
i,

N(αi)=2

N(αi).

By Lemma 2.11, for the products where N(αi) = q2 or 2, there is only one αi with N(αi) = q2

or 2, respectively. Thus, we need only count the number of ways to choose αi when N(αi) = p.
Thus, r(k) = r(m).

As N(α) has only 1 mod 4 factors, we write it

N(α) =
∏
i,

N(αi,j)=pi

(N(αi,1)N(αi,2) · · ·N(αi,ki)),

where the pi are distinct 1 mod 4 primes, and αi,j are primes in Z[i]. This comes from
representing

α =
∏
i,

N(αi,j)=pi

(αi,1αi,2 · · ·αi,ki).

By Lemma 2.11, there are exactly 2 choices for each αi,j , where 1 ≤ j ≤ ki. These two choices

8
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are βi and βi.

We have exactly ki + 1 ways to assign the αi,j in each term: we may have x of the αi,j be βi

and the other ki − x of the αi,j be βi for all 0 ≤ x ≤ ki.

Multiplying over i, the number of ways to choose all αi,j where i and j are both free is∏
i

(ki + 1).

We will show these are distinct. Each of βi and βi are prime in Z[i] while UPF tells us distinct
prime factorizations cannot result in the same α. Thus each of the∏

i

(ki + 1)

ways specified above are distinct, as needed.

3 Sums of Three Squares

Lemma 3.1
If n ≡ 7 (mod 8), then n cannot be written as the sum of three integer squares. That is,
there do not exist integers x, y, z such that

n = x2 + y2 + z2.

Proof. Every integer can be written in the form 8k + r where r ∈ {0, 1, 2, 3, 4,−3,−2,−1}.
Also, note that x2 ≡ (−x)2 mod 8, so we only need to consider x ∈ {0, 1, 2, 3, 4}. Their
squares mod 8 are

(8k)2 = 64k2 ≡ 0 (mod 8)

(8k + 1)2 = 64k2 + 16k + 1 ≡ 1 (mod 8)

(8k + 2)2 = 64k2 + 32k + 4 ≡ 4 (mod 8)

(8k + 3)2 = 64k2 + 48k + 9 ≡ 1 (mod 8)

(8k + 4)2 = 64k2 + 64k + 16 ≡ 0 (mod 8)

So for any integer a, we have that

a2 ≡ 0, 1, 4 (mod 8).

Now we consider all possible sums x2 + y2 + z2 mod 8, where each square is in {0, 1, 4}. The
representative combinations are

0 + 0 + 0 = 0, 0 + 0 + 1 = 1, 0 + 0 + 4 = 4, 0 + 1 + 1 = 2, 0 + 1 + 4 = 5,

0 + 4 + 4 = 0, 1 + 1 + 1 = 3, 1 + 1 + 4 = 6, 1 + 4 + 4 = 1, 4 + 4 + 4 = 4.
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So, the possible values of x2 + y2 + z2 mod 8 are 0, 1, 2, 3, 4, 5, 6. Since 7 is not in this set, n
cannot be written as n = x2 + y2 + z2.

The following lemma will be useful to prove our characterization of the sum of three
squares.

Lemma 3.2
For integers x, y and z, if x2 + y2 + z2 is divisible by 4, then x, y, z are all even.

Proof. By Lemma 2.3, the only possible square residues are 0 and 1 and that an odd number
squared is 1 mod 4. The possible sums are 1, 2, or 3 mod 4. Hence, for the sum to be 0 mod
4, all three must be even.

Theorem 3.3
Let n = 4a(8k+7) be a positive integer, where a, k ∈ Z≥0. Then n cannot be represented
as the sum of three integer squares; that is, there do not exist integers x, y, z such that

n = x2 + y2 + z2.

Proof. (Induction). We will induct on a. For the base case, when a = 0, we have n = 8k + 7,
which cannot be written as the sum of 3 squares by Lemma 3.1. Now, assume that for some
a ≥ 1, no integer of the form 4a(8k + 7) can be written as the sum of three squares.

Consider n = 4a+1(8k + 7). Suppose for the sake of contradiction, that

4a+1(8k + 7) = x2 + y2 + z2

for integers x, y, and z. By Lemma 3.2, x, y, and z are even. Write x = 2x0, y = 2y0, z = 2z0
for integers x′, y′, z′. Substituting gives

4a+1(8k + 7) = 4(x2 + y20 + z20),

and dividing by 4 gives

4a(8k + 7) = x2 + y20 + z20 ,

which contradicts the inductive hypothesis. Therefore, no integer of the form 4a(8k + 7) can
be written as the sum of three integer squares.

4 Sums of Four Squares

We show that all natural numbers are representable as the sum of four squares.

Theorem 4.1
For all n ∈ N, there exists a, b, c, d ∈ Z such that n = a2 + b2 + c2 + d2.
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We begin by proving supporting lemmas.

Lemma 4.2
The set of natural numbers that can be written as a sum of four squares is closed under
multiplication.

Proof. Let n = a2 + b2 + c2 + d2 and m = w2 + x2 + y2 + z2. Then

nm = (aw+bx+cy+dz)2+(ax−bw+cz−dy)2+(ay−bz−cw+dx)2+(az+by−cx−dw)2

so nm is also a sum of four squares.

Lemma 4.3
Let p be an odd prime. If p ≡ 3 (mod 4), then there exist a, b, c, d ∈ Up such that

a2 + b2 + c2 + d2 ≡ 0 (mod p).

Proof. Let p be an odd prime that is 3 mod 4. Note that(
p− 1

2

)2

≡ p2 − 2p+ 1

4
≡ 1

4
≡ p+ 1

4
(mod p)

and that p+1
4

is an integer, due to p being 3 mod 4. Then, we have that(
p− 1

2

)2

+

(
p− 1

2

)2

+
p− 1

2
≡ 0 (mod p).

If there exist quadratic residues mod p that sum to p−1
2

, or p−1
2

is itself a quadratic residue,
we are done. Thus, assume that p−1

2
is a quadratic non-residue mod p. Now, consider the

pairwise sums

1 +
p− 3

2
≡ 2 +

p− 5

2
≡ · · · ≡ p− 3

4
+

p+ 1

4
≡ p− 1

2
(mod p)

and
p+ 1

2
+ p− 1 ≡ p+ 3

2
+ p− 2 ≡ · · · ≡ 3p− 1

4
+

3p− 1

4
≡ p− 1

2
(mod p)

In total, there are p−1
2

pairs that sum to p−1
2

, with every unit except for p−1
2

included in one
and only one sum. Because p−1

2
is a quadratic non-residue by assumption, the p−1

2
quadratic

residues mod p must all be present in the pairwise sums. If two of them are in the same
pairwise sum, we are done. However, if no two of them are in the same pairwise sum, then
there must be one in each pairwise sum, including the 3p−1

4
+ 3p−1

4
sum, so we are done.

Lemma 4.4
For all a, b ∈ N, there exist q, r ∈ Z such that a = bq + r and − b

2
< r ≤ b

2
.

Proof. By the division algorithm, there exist q′, r′ ∈ Z such that a = bq′ + r′ and 0 ≤ r′ < b.
If 0 ≤ r′ ≤ b

2
, we are done. If b

2
< r′ < b, then taking r = r′ − b and q = q′ + 1 concludes.
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4 Sums of Four Squares

Lemma 4.5
For all k ∈ N, we have that k is a sum of four squares if and only if 2k is a sum of four
squares.

Proof. If k is a sum of four squares, then 2k is a sum of four squares by Lemma 4.2, as
2 = 12 + 12 + 02 + 02. Now, if 2k = a2 + b2 + c2 + d2, there must be an even number of odd
squares in the sum, so the sum can be split into two pairs of squares with the same parity.
Without loss of generality, let the pairs be a2 + b2 and c2 + d2. Then, we have that(

a+ b

2

)2

+

(
a− b

2

)2

+

(
c+ d

2

)2

+

(
c− d

2

)2

=
2a2 + 2b2 + 2c2 + 2d2

4
= k.

Since a2 and b2 are the same parity, it follows that a+ b and a− b are both even; the same is
true for c and d. Thus, we have that k is also expressible as the sum of four squares.

Theorem 4.6
Let p be an odd prime. If p ≡ 3 (mod 4), then there exist a, b, c, d ∈ Z such that

p = a2 + b2 + c2 + d2.

Proof. By Lemma 4.3, there exist multiples of p that are expressible as the sum of four
squares. Let

a2 + b2 + c2 + d2 = np

be the smallest positive multiple of p expressible as the sum of four squares. If n = 1, we are
done; thus, assume for the sake of contradiction that n > 1. Furthermore, because Lemma 4.3
constructs a multiple of p that is the sum of squares of units, and u2 ≡ (p− u)2 for all units
u ∈ Up, we have that

np ≤ 4

(
p− 1

2

)2

< 4
(p
2

)2
= p2,

so n < p. Now, by Lemma 4.5, we have that n must be odd, or else np/2 would be a smaller
multiple of p. Then, applying Lemma 4.4 to a, b, c, and d, let

a = a1n+ a2

b = b1n+ b2

c = c1n+ c2

d = d1n+ d2.

Substituting into the sum of four squares, we find

np = (a1n+ a2)
2 + (b1n+ b2)

2 + (c1n+ c2)
2 + (d1n+ d2)

2

= n2(a21 + b21 + c21 + d21) + 2n(a1a2 + b1b2 + c1c2 + d1d2) + (a22 + b22 + c22 + d22).

Then, isolating a22 + b22 + c22 + d22 and dividing both sides by n, we have that
a22 + b22 + c22 + d22

n
= p− (a21 + b21 + c21 + d21)n− 2(a1a2 + b1b2 + c1c2 + d1d2).

12
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The sum of squares a22 + b22 + c22 + d22 is thus divisible by n. Next, it follows from Lemma 4.4
that

−n

2
< a2, b2, c2, d2 ≤

n

2
.

However, since n is odd, the bounds can be improved to

−n

2
< −n− 1

2
≤ a2, b2, c2, d2 ≤

n− 1

2
<

n

2
.

Squaring the inequality yields

0 ≤ a22, b
2
2, c

2
2, d

2
2 ≤

(
n− 1

2

)2

<
n2

4
.

Dividing by n gives

a22 + b22 + c22 + d22
n

<
4
(
n
2

)2
n

= n.

Let k = (a22 + b22 + c22 + d22) /n. If k = 0, then each of a2, b2, c2, and d2 must be 0. Con-
sequently, we have that n divides a, b, c, and d, so n2 divides a2 + b2 + c2 + d2 = np, a
contradiction to the primality of p. Therefore, assume k > 0. Then, multiplying k by p, we
have that

kp =
a22 + b22 + c22 + d22

n
· a

2 + b2 + c2 + d2

n

=
(a2a+ b2b+ c2c+ d2d)

2

n2
+

(a2b− b2a+ c2d− d2c)
2

n2

+
(a2c− b2d− c2a+ d2b)

2

n2
+

(a2d+ b2c− c2b− d2a)
2

n2

=

(
a2(na1 + a2) + b2(nb1 + b2) + c2(nc1 + c2) + d2(nd1 + d2)

n

)2

+

(
a2(nb1 + b2)− b2(na1 + a2) + c2(nd1 + d2)− d2(nc1 + c2)

n

)2

+

(
a2(nc1 + c2)− b2(nd1 + d2)− c2(na1 + a2) + d2(nb1 + b2)

n

)2

+

(
a2(nd1 + d2) + b2(nc1 + c2)− c2(nb1 + b2)− d2(na1 + a2)

n

)2

We examine each of the four squares individually.(
a2(na1 + a2) + b2(nb1 + b2) + c2(nc1 + c2) + d2(nd1 + d2)

n

)2

=

(
n(a1a2 + b1b2 + c1c2 + d1d2) + (a22 + b22 + c22 + d22)

n

)2

=

(
a1a2 + b1b2 + c1c2 + d1d2 +

a22 + b22 + c22 + d22
n

)2

13
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= (a1a2 + b1b2 + c1c2 + d1d2 + k)2

The first square is thus the square of an integer.(
a2(nb1 + b2)− b2(na1 + a2) + c2(nd1 + d2)− d2(nc1 + c2)

n

)2

=

(
n(a2b1 − b2a1 + c2d1 − d2c1) + a2b2 − b2a2 + c2d2 − d2c2

n

)2

=

(
n(a2b1 − b2a1 + c2d1 − d2c1)

n

)2

= (a2b1 − b2a1 + c2d1 − d2c1)
2

The second square is thus the square of an integer.(
a2(nc1 + c2)− b2(nd1 + d2)− c2(na1 + a2) + d2(nb1 + b2)

n

)2

=

(
n(a2c1 − b2d1 − c2a1 + d2b1) + a2c2 − b2d2 − c2a2 + d2b2

n

)2

=

(
n(a2c1 − b2d1 − c2a1 + d2b1)

n

)2

= (a2c1 − b2d1 − c2a1 + d2b1)
2

The third square is thus the square of an integer.(
a2(nd1 + d2) + b2(nc1 + c2)− c2(nb1 + b2)− d2(na1 + a2)

n

)2

=

(
n(a2d1 + b2c1 − c2b1 − d2a1) + a2d2 + b2c2 − c2b2 − d2a2

n

)2

=

(
n(a2d1 + b2c1 − c2b1 − d2a1)

n

)2

= (a2d1 + b2c1 − c2b1 − d2a1)
2

The fourth square is thus the square of an integer.

As a result, we have that kp is a smaller multiple of p that can be written as the sum of four
squares, which is a contradiction. Therefore, n > 1 is impossible, so n = 1.

We are now ready to show that all naturals can be expressed as the sum of four squares.

Proof of Theorem 4.1. Note that 1 is a sum of four squares, as

1 = 12 + 02 + 02 + 02.

Now, from Remark 2.2, we have that 2 is a sum of two squares and thus also a sum of four
squares. Then, by Theorem 2.5, we have that all primes that are 1 mod 4 are sums of two
squares and thus also sums of four squares. Finally, by Theorem 4.6, we have that all primes
that are 3 mod 4 are sums of four squares. Consequently, all primes are expressible as the
sum of four squares; since any natural greater than one is a product of primes, Lemma 4.3
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concludes.

5 r-gonal Numbers

Definition 5.1. An r-gonal number is a number that counts dots arranged in the shape of
a regular r-gon. The n-th r-gon is formed by extending two adjacent sides of the previous
r-gon by one dot and adding other necessary dots to form a regular r-gon.

Lemma 5.2
The nth r-gonal number is given by the formula

f(n, r) :=
n(2 + (r − 2)(n− 1))

2
.

Proof. Let n, r ∈ N. To find the difference between f(n, r) and f(n − 1, r), we count two
parts: the new dots as vertices and the new dots as edges. First, for the vertices, we add r− 1
dots because we have r dots as vertices in a r-gon and 1 dot is already from the (n− 1)th
r-gon. Next, there are r − 2 newly added edges with each one having n− 2 dots on the edge.
So the total number of new dots added is

(r − 1) + (n− 2)(r − 2) = 1 + (n− 1)(r − 2).

Therefore,

f(n, r) = f(n− 1, r) + (1 + (n− 1)(r − 2)).

So we know that

f(n, r) = f(r, 0) +
n−1∑
k=0

(1 + k(r − 2))

= 0 +
n−1∑
k=0

(1 + k(r − 2))

=
n(1 + (1 + (n− 1)(r − 2)))

2

=
n(2 + (n− 1)(r − 2))

2
.
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