Apollonian Circle Packings

Clyde Kertzer

University of Colorado Boulder
June 15, 2023

Descartes Quadruples

Circle
Packings
Clyde Kertzer

Descartes Quadruples

Apollonian
Circle
Packings
Clyde Kertzer

Definition
A Descartes Quadruple is a set of four mutually tangent circles with disjoint interiors.

Descartes Quadruples

Apollonian
Circle
Packings
Clyde Kertzer

Definition

A Descartes Quadruple is a set of four mutually tangent circles with disjoint interiors.

Descartes Quadruples

Apollonian
Circle
Packings
Clyde Kertzer

Definition

A Descartes Quadruple is a set of four mutually tangent circles with disjoint interiors.

Descartes Quadruples

Apollonian
Circle
Packings
Clyde Kertzer

Definition

A Descartes Quadruple is a set of four mutually tangent circles with disjoint interiors.

We can only have at most one "inverted" circle!

Descartes Quadruples

Apollonian
Circle
Packings
Clyde Kertzer

Definition

A Descartes Quadruple is a set of four mutually tangent circles with disjoint interiors.

We can only have at most one "inverted" circle!

Theorem of Apollonius

If three circles are mutually tangent, there are two other circles that are tangent to all three.

The Descartes Equation

The Descartes Equation

Apollonian
Circle
Packings
Clyde Kertzer

Definition

The curvature of a circle with radius r is defined to be $1 / r$.

The Descartes Equation

Apollonian
Circle
Packings
Clyde Kertzer

Definition

The curvature of a circle with radius r is defined to be $1 / r$.

Quadruple with one circle of infinite radius

The Descartes Equation

Apollonian
Circle
Packings
Clyde Kertzer

Definition

The curvature of a circle with radius r is defined to be $1 / r$.

Quadruple with one circle of infinite radius

Descartes Equation

If four mutually tangent circles have curvatures a, b, c, d then

$$
(a+b+c+d)^{2}=2\left(a^{2}+b^{2}+c^{2}+d^{2}\right)
$$

Apollonian Circle Packings

If a, b, c, d are integers, the rest are also integers!

Apollonian Circle Packings

If a, b, c, d are integers, the rest are also integers!

Apollonian Circle Packings

If a, b, c, d are integers, the rest are also integers!

Apollonian Circle Packings

Apollonian
Circle
Packings
Clyde Kertzer

Apollonian Circle Packings

Apollonian
Circle
Packings
Clyde Kertzer

Apollonian Circle Packings

Apollonian
Circle
Packings
Clyde Kertzer

Apollonian Circle Packings

Apollonian
Circle
Packings
Clyde Kertzer

Apollonian Circle Packings

Apollonian
Circle
Packings
Clyde Kertzer

$$
[-6,11,14,23]^{1}
$$

${ }^{1}$ Images from: AMS "When Kissing Involves Trigonometry"

Apollonian Circle Packings

Apollonian
Circle
Packings
Clyde Kertzer

$$
[-6,11,14,23]
$$

Apollonian Circle Packings

Apollonian
Circle
Packings
Clyde Kertzer

$[-6,11,14,23]$ reduces to $[-6,11,14,15]$

Apollonian Circle Packings

Apollonian
Circle
Packings
Clyde Kertzer

Apollonian Circle Packings

Apollonian
Circle
Packings
Clyde Kertzer

Apollonian Circle Packings

Apollonian
Circle
Packings
Clyde Kertzer

(a) $[-1,2,2,3]$

Apollonian Circle Packings

Apollonian
Circle
Packings
Clyde Kertzer

(a) $[-1,2,2,3]$

(b) $[-3,4,12,13]$

Apollonian Circle Packings

Apollonian
Circle
Packings
Clyde Kertzer

The strip packing: $[0,0,1,1]$

Symmetric Packings

Circle
Packings

Clyde Kertzer

Symmetric Packings

Apollonian
Circle
Packings
Clyde Kertzer

(a) $[-4,5,20,21]$

Symmetric Packings

Apollonian
Circle
Packings
Clyde Kertzer

(a) $[-4,5,20,21]$

(b) $[-4,8,9,9]$

Symmetric Packings

Circle
Packings

Clyde Kertzer

Symmetric Packings

Apollonian
Circle
Packings
Clyde Kertzer

Recall: $(a+b+c+d)^{2}=2\left(a^{2}+b^{2}+c^{2}+d^{2}\right)$.

$$
[-a, b, c, d] \quad d-c, \quad d-b, \quad d+a
$$

Symmetric Packings

$$
\begin{array}{l|l|l|l}
{[-a, b, c, d]} & d-c & d-b & d+a \\
\hline[-6,10,15,19] & &
\end{array}
$$

Symmetric Packings

Apollonian
Circle
Packings
Clyde Kertzer

$$
\begin{array}{l|c|c|c}
{[-a, b, c, d]} & d-c & d-b & d+a \\
\hline[-6,10,15,19] & 4 & 9 & 25
\end{array}
$$

Symmetric Packings

Apollonian
Circle
Packings
Clyde Kertzer

$$
\begin{array}{l|c|c|c}
{[-a, b, c, d]} & d-c & d-b & d+a \\
\hline[-6,10,15,19] & 4 & 9 & 25 \\
{[-12,21,28,37]} & 9 & 16 & 49 \\
{[-18,22,99,103]} & 4 & 81 & 121 \\
{[-20,36,45,61]} & 16 & 25 & 81 \\
{[-21,30,70,79]} & 9 & 49 & 100
\end{array}
$$

Symmetric Packings

Apollonian
Circle
Packings
Clyde Kertzer

$$
\begin{array}{l|c|c|c}
{[-a, b, c, d]} & d-c & d-b & d+a \\
\hline[-6,10,15,19] & 2^{2} & 3^{2} & 5^{2} \\
{[-12,21,28,37]} & 3^{2} & 4^{2} & 7^{2} \\
{[-18,22,99,103]} & 2^{2} & 9^{2} & 11^{2} \\
{[-20,36,45,61]} & 4^{2} & 5^{2} & 9^{2} \\
{[-21,30,70,79]} & 3^{2} & 7^{2} & 10^{2}
\end{array}
$$

Symmetric Packings

Apollonian
Circle
Packings
Clyde Kertzer

$[-a, b, c, d]$	$d-c$	$b-a$	$d-b$	$c-a$	$d+a$
$[-6,10,15,19]$	2^{2}		3^{2}		5^{2}
$[-12,21,28,37]$	3^{2}		4^{2}		7^{2}
$[-18,22,99,103]$	2^{2}		9^{2}		11^{2}
$[-20,36,45,61]$	4^{2}		5^{2}		9^{2}
$[-21,30,70,79]$	3^{2}		7^{2}		10^{2}

Symmetric Packings

Apollonian Cricle Packings Clyde Kertzer	$[-a, b, c, d]$	$[-6,10,15,19]$	$d-c$	$b-a$	$d-b$	$c-a$
	$[-12,21,28,37]$	2^{2}	2^{2}	3^{2}	3^{2}	3^{2}
	$[-18,22,99,103]$	2^{2}	2^{2}	4^{2}	9^{2}	9^{2}
	$[-20,36,45,61]$	4^{2}	4^{2}	7^{2}		
	$[-21,30,70,79]$	3^{2}	3^{2}	7^{2}	5^{2}	7^{2}
	$\left[-20^{2}\right.$					

Symmetric Packings

Apollonian
Circle Packings
Clyde Kertzer

$[-a, b, c, d]$	$d-c$	$b-a$	$d-b$	$c-a$	$d+a$
$[-6,10,15,19]$	2^{2}	2^{2}	3^{2}	3^{2}	5^{2}
$[-12,21,28,37]$	3^{2}	3^{2}	4^{2}	4^{2}	7^{2}
$[-18,22,99,103]$	2^{2}	2^{2}	9^{2}	9^{2}	11^{2}
$[-20,36,45,61]$	4^{2}	4^{2}	5^{2}	5^{2}	9^{2}
$[-21,30,70,79]$	3^{2}	3^{2}	7^{2}	7^{2}	10^{2}

Given the factorization of a, we can find the entire packing.

Symmetric Packings

Apollonian
Circle
Packings
Clyde Kertzer

$[-a, b, c, d]$	$d-c$	$b-a$	$d-b$	$c-a$	$d+a$
$[-6,10,15,19]$	2^{2}	2^{2}	3^{2}	3^{2}	5^{2}
$[-12,21,28,37]$	3^{2}	3^{2}	4^{2}	4^{2}	7^{2}
$[-18,22,99,103]$	2^{2}	2^{2}	9^{2}	9^{2}	11^{2}
$[-20,36,45,61]$	4^{2}	4^{2}	5^{2}	5^{2}	9^{2}
$[-21,30,70,79]$	3^{2}	3^{2}	7^{2}	7^{2}	10^{2}

Given the factorization of a, we can find the entire packing.

$$
[\underbrace{-(2 \cdot 3)}_{-6}, \underbrace{2^{2}+2 \cdot 3}_{10}, \underbrace{3^{2}+2 \cdot 3}_{15}, \underbrace{(2+3)^{2}-2 \cdot 3}_{19}]
$$

Symmetric Packings

Apollonian
Circle
Packings
Clyde Kertzer

$[-a, b, c, d]$	$d-c$	$b-a$	$d-b$	$c-a$	$d+a$
$[-6,10,15,19]$	2^{2}	2^{2}	3^{2}	3^{2}	5^{2}
$[-12,21,28,37]$	3^{2}	3^{2}	4^{2}	4^{2}	7^{2}
$[-18,22,99,103]$	2^{2}	2^{2}	9^{2}	9^{2}	11^{2}
$[-20,36,45,61]$	4^{2}	4^{2}	5^{2}	5^{2}	9^{2}
$[-21,30,70,79]$	3^{2}	3^{2}	7^{2}	7^{2}	10^{2}

Given the factorization of a, we can find the entire packing.

$$
\begin{gathered}
{[\underbrace{-(2 \cdot 3)}_{-6}, \underbrace{2^{2}+2 \cdot 3}_{10}, \underbrace{3^{2}+2 \cdot 3}_{15}, \underbrace{(2+3)^{2}-2 \cdot 3}_{19}]} \\
{\left[-x y, x^{2}+x y, y^{2}+x y,(x+y)^{2}-x y\right]}
\end{gathered}
$$

Symmetric Packings

Apollonian
Circle
Packings
Clyde Kertzer

$[-a, b, c, d]$	$d-c$	$b-a$	$d-b$	$c-a$	$d+a$
$[-6,10,15,19]$	2^{2}	2^{2}	3^{2}	3^{2}	5^{2}
$[-12,21,28,37]$	3^{2}	3^{2}	4^{2}	4^{2}	7^{2}
$[-18,22,99,103]$	2^{2}	2^{2}	9^{2}	9^{2}	11^{2}
$[-20,36,45,61]$	4^{2}	4^{2}	5^{2}	5^{2}	9^{2}
$[-21,30,70,79]$	3^{2}	3^{2}	7^{2}	7^{2}	10^{2}

Given the factorization of a, we can find the entire packing.

$$
\begin{gathered}
{[\underbrace{-(2 \cdot 3)}_{-6}, \underbrace{2^{2}+2 \cdot 3}_{10}, \underbrace{3^{2}+2 \cdot 3}_{15}, \underbrace{(2+3)^{2}-2 \cdot 3}_{19}]} \\
{\left[-x y, x^{2}+x y, y^{2}+x y,(x+y)^{2}-x y\right]} \\
{\left[-x y, x(x+y), y(x+y),(x+y)^{2}-x y\right]}
\end{gathered}
$$

Symmetric Packings

Apollonian
Circle Packings

$[-a, b, c, d]$	$d-c$	$d-b$	$d+a$
$[-6,10,15,19]$	2^{2}	3^{2}	5^{2}
$[-12,21,28,37]$	3^{2}	4^{2}	7^{2}
$[-18,22,99,103]$	2^{2}	9^{2}	11^{2}
$[-20,36,45,61]$	4^{2}	5^{2}	9^{2}
$[-21,30,70,79]$	3^{2}	7^{2}	10^{2}

Symmetric Packings

Apollonian
Circle Packings
Clyde Kertzer

$$
\begin{array}{l|c|c|c}
{[-a, b, c, d]} & d-c & d-b & d+a \\
\hline[-6,10,15,19] & 2^{2} & 3^{2} & 5^{2} \\
{[-12,21,28,37]} & 3^{2} & 4^{2} & 7^{2} \\
{[-18,22,99,103]} & 2^{2} & 9^{2} & 11^{2} \\
{[-20,36,45,61]} & 4^{2} & 5^{2} & 9^{2} \\
{[-21,30,70,79]} & 3^{2} & 7^{2} & 10^{2}
\end{array}
$$

Try with $12=6 \cdot 2$:

Symmetric Packings

Apollonian
Circle
Packings
Clyde Kertzer

$$
\begin{array}{l|c|c|c}
{[-a, b, c, d]} & d-c & d-b & d+a \\
\hline[-6,10,15,19] & 2^{2} & 3^{2} & 5^{2} \\
{[-12,21,28,37]} & 3^{2} & 4^{2} & 7^{2} \\
{[-18,22,99,103]} & 2^{2} & 9^{2} & 11^{2} \\
{[-20,36,45,61]} & 4^{2} & 5^{2} & 9^{2} \\
{[-21,30,70,79]} & 3^{2} & 7^{2} & 10^{2}
\end{array}
$$

Try with $12=6 \cdot 2$:

$$
\left[-x y, x(x+y), y(x+y),(x+y)^{2}-x y\right]=
$$

Symmetric Packings

Apollonian
Circle
Packings
Clyde Kertzer

$$
\begin{array}{l|c|c|c}
{[-a, b, c, d]} & d-c & d-b & d+a \\
\hline[-6,10,15,19] & 2^{2} & 3^{2} & 5^{2} \\
{[-12,21,28,37]} & 3^{2} & 4^{2} & 7^{2} \\
{[-18,22,99,103]} & 2^{2} & 9^{2} & 11^{2} \\
{[-20,36,45,61]} & 4^{2} & 5^{2} & 9^{2} \\
{[-21,30,70,79]} & 3^{2} & 7^{2} & 10^{2}
\end{array}
$$

Try with $12=6 \cdot 2$:

$$
\begin{aligned}
& {\left[-x y, x(x+y), y(x+y),(x+y)^{2}-x y\right]=} \\
& {\left[-2 \cdot 6,2(2+6), 6(2+6),(2+6)^{2}-2 \cdot 6\right]=}
\end{aligned}
$$

Symmetric Packings

Apollonian
Circle
Packings
Clyde Kertzer

$$
\begin{array}{l|c|c|c}
{[-a, b, c, d]} & d-c & d-b & d+a \\
\hline[-6,10,15,19] & 2^{2} & 3^{2} & 5^{2} \\
{[-12,21,28,37]} & 3^{2} & 4^{2} & 7^{2} \\
{[-18,22,99,103]} & 2^{2} & 9^{2} & 11^{2} \\
{[-20,36,45,61]} & 4^{2} & 5^{2} & 9^{2} \\
{[-21,30,70,79]} & 3^{2} & 7^{2} & 10^{2}
\end{array}
$$

Try with $12=6 \cdot 2$:

$$
\begin{aligned}
& \quad\left[-x y, x(x+y), y(x+y),(x+y)^{2}-x y\right]= \\
& {\left[-2 \cdot 6,2(2+6), 6(2+6),(2+6)^{2}-2 \cdot 6\right]=} \\
& {[-12,16,48,52]}
\end{aligned}
$$

Symmetric Packings

Apollonian
Circle
Packings
Clyde Kertzer

$$
\begin{array}{l|c|c|c}
{[-a, b, c, d]} & d-c & d-b & d+a \\
\hline[-6,10,15,19] & 2^{2} & 3^{2} & 5^{2} \\
{[-12,21,28,37]} & 3^{2} & 4^{2} & 7^{2} \\
{[-18,22,99,103]} & 2^{2} & 9^{2} & 11^{2} \\
{[-20,36,45,61]} & 4^{2} & 5^{2} & 9^{2} \\
{[-21,30,70,79]} & 3^{2} & 7^{2} & 10^{2}
\end{array}
$$

Try with $12=6 \cdot 2$:

$$
\begin{aligned}
& {\left[-x y, x(x+y), y(x+y),(x+y)^{2}-x y\right]=} \\
& {\left[-2 \cdot 6,2(2+6), 6(2+6),(2+6)^{2}-2 \cdot 6\right]=} \\
& {[-12,16,48,52]=[-3,4,12,13]}
\end{aligned}
$$

Symmetric Packings

Apollonian
Circle
Packings
Clyde Kertzer

$$
\begin{array}{l|c|c|c}
{[-a, b, c, d]} & d-c & d-b & d+a \\
\hline[-6,10,15,19] & 2^{2} & 3^{2} & 5^{2} \\
{[-12,21,28,37]} & 3^{2} & 4^{2} & 7^{2} \\
{[-18,22,99,103]} & 2^{2} & 9^{2} & 11^{2} \\
{[-20,36,45,61]} & 4^{2} & 5^{2} & 9^{2} \\
{[-21,30,70,79]} & 3^{2} & 7^{2} & 10^{2}
\end{array}
$$

Try with $12=6 \cdot 2$:

$$
\begin{gathered}
{\left[-x y, x(x+y), y(x+y),(x+y)^{2}-x y\right]=} \\
{\left[-2 \cdot 6,2(2+6), 6(2+6),(2+6)^{2}-2 \cdot 6\right]=} \\
{[-12,16,48,52]=[-3,4,12,13] \quad(x=3, y=1)}
\end{gathered}
$$

Symmetric Packings

Apollonian
Circle
Packings
Clyde Kertzer

Theorem

All reduced primitive symmetric quadruples with distinct a, b, c, d are of the form

$$
\left[-x y, x(x+y), y(x+y),(x+y)^{2}-x y\right] .
$$

with $\operatorname{gcd}(x, y)=1$.

Symmetric Packings

Packings where one of the numbers is the same:

Symmetric Packings

Apollonian
Circle
Packings
Clyde Kertzer

Packings where one of the numbers is the same: $[-4,8,9,9]$

Symmetric Packings

Apollonian
Circle
Packings
Clyde Kertzer

Packings where one of the numbers is the same: $[-4,8,9,9]$

Theorem

All primitive $A C P s$ with $c=d$ are given by

$$
\begin{aligned}
& {\left[-x, x+y^{2},\left(\frac{2 x+y^{2}}{2 y}\right)^{2},\left(\frac{2 x+y^{2}}{2 y}\right)^{2}\right] \quad y \text { even }} \\
& {\left[-x, x+2 y^{2}, 2\left(\frac{x+y^{2}}{2 y}\right)^{2}, 2\left(\frac{x+y^{2}}{2 y}\right)^{2}\right] \quad y \text { odd }}
\end{aligned}
$$

Symmetric Packings

Apollonian
Circle
Packings
Clyde Kertzer

Packings where one of the numbers is the same: $[-4,8,9,9]$

Theorem

All primitive $A C P s$ with $c=d$ are given by

$$
\begin{aligned}
& {\left[-x, x+y^{2},\left(\frac{2 x+y^{2}}{2 y}\right)^{2},\left(\frac{2 x+y^{2}}{2 y}\right)^{2}\right] \quad y \text { even }} \\
& {\left[-x, x+2 y^{2}, 2\left(\frac{x+y^{2}}{2 y}\right)^{2}, 2\left(\frac{x+y^{2}}{2 y}\right)^{2}\right] \quad y \text { odd }}
\end{aligned}
$$

