Introduction to Quadratic Reciprocity	
Clyde Kertzer	
	Introduction to Quadratic Reciprocity
	Clyde Kertzer

December 13, 2021

Modular Arithmetic

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆

Modular Arithmetic

Introduction to Quadratic Reciprocity

Clyde Kertzer

$$7/5 = 1$$
, remainder $2 \longrightarrow 7 \equiv 2 \mod 5$
 $9/4 = 2$, remainder $1 \longrightarrow 9 \equiv 1 \mod 4$
 $13/4 = 3$, remainder $1 \longrightarrow 13 \equiv 1 \mod 4$

Modular Arithmetic Introduction to Quadratic Reciprocity Clyde Kertzer 7/5 = 1, remainder $2 \longrightarrow 7 \equiv 2 \mod 5$ 9/4 = 2, remainder $1 \longrightarrow 9 \equiv 1 \mod 4$ 13/4 = 3, remainder $1 \longrightarrow 13 \equiv 1 \mod 4$ Leftover number \longrightarrow **residue**

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Basic Functions in Modular Arithmetic Introduction to Quadratic Reciprocity Clyde Kertzer

Basic Functions in Modular Arithmetic

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction to Quadratic Reciprocity

Addition:

Clyde Kertzer

Basic Functions in Modular Arithmetic

Introduction to Quadratic Reciprocity Clyde Kertzer

Addition:

 $(8+6) \mod 5 \equiv 8 \mod 5 + 6 \mod 5$ $\equiv 3 \mod 5 + 1 \mod 5$ $\equiv 4 \mod 5$ $14 \mod 5 \equiv 4 \mod 5$

Multiplication:

 $(8*6) \mod 5 \equiv 8 \mod 5*6 \mod 5$ $\equiv 3 \mod 5*1 \mod 5$ $\equiv 3 \mod 5$ $48 \mod 5 \equiv 3 \mod 5$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

	Basic Functions in Modular Arithmetic
Introduction to Quadratic Reciprocity Clyde Kertzer	Division:

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆

	Residue Systems
Introduction to Quadratic Reciprocity Clyde Kertzer	

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆

	Residue Systems			
Introduction to Quadratic Reciprocity Clyde Kertzer	$mod4 \longrightarrow \{0,1,2,3\}$	\mathbb{Z}_4		

ふして 前 (山田)(山田) (日) (日)

	Residue Systems
Introduction to Quadratic Reciprocity Clyde Kertzer	$\begin{array}{l} mod4 \longrightarrow \{0,1,2,3\} \mathbb{Z}_4 \\ mod12 \longrightarrow \{0,1,2,3,4,5,6,7,8,9,10,11\}\mathbb{Z}_{12} \end{array}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆

	Residue	Systems	
--	---------	---------	--

Introduction to Quadratic Reciprocity

Clyde Kertzer

 $\begin{array}{ll} \mathsf{mod4} \longrightarrow \{0,1,2,3\} & \mathbb{Z}_4 \\ \mathsf{mod12} \longrightarrow \{0,1,2,3,4,5,6,7,8,9,10,11\}\mathbb{Z}_{12} \\ \mathsf{Reduce a residue system: remove residues that are coprime.} \end{array}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Residue Systems

Introduction to Quadratic Reciprocity

Clyde Kertzer

 $\begin{array}{ll} \mathsf{mod4} \longrightarrow \{0,1,2,3\} & \mathbb{Z}_4 \\ \mathsf{mod12} \longrightarrow \{0,1,2,3,4,5,6,7,8,9,10,11\}\mathbb{Z}_{12} \\ \mathsf{Reduce\ a\ residue\ system:\ remove\ residues\ that\ are\ coprime.} \\ \mathsf{mod4} \longrightarrow \{1,3\} \end{array}$

Residue Systems

Introduction to Quadratic Reciprocity

Clyde Kertzer

 $\begin{array}{ll} \mathsf{mod4} \longrightarrow \{0,1,2,3\} & \mathbb{Z}_4 \\ \mathsf{mod12} \longrightarrow \{0,1,2,3,4,5,6,7,8,9,10,11\}\mathbb{Z}_{12} \\ \mathsf{Reduce\ a\ residue\ system:\ remove\ residues\ that\ are\ coprime.} \\ \mathsf{mod4} \longrightarrow \{1,3\} \\ \mathsf{mod12} \longrightarrow \{1,5,7,11\} \end{array}$

Residue Systems

Introduction to Quadratic Reciprocity

Clyde Kertzer

 $\begin{array}{ll} \mbox{mod}4 \longrightarrow \{0,1,2,3\} & \mathbb{Z}_4 \\ \mbox{mod}12 \longrightarrow \{0,1,2,3,4,5,6,7,8,9,10,11\}\mathbb{Z}_{12} \\ \mbox{Reduce a residue system: remove residues that are coprime.} \\ \mbox{mod}4 \longrightarrow \{1,3\} \\ \mbox{mod}12 \longrightarrow \{1,5,7,11\} \\ \mbox{mod}11 \longrightarrow \{1,2,3,4,5,6,7,8,9,10\} \end{array}$

	Quadratic Residues
Introduction to Quadratic Reciprocity Clyde Kertzer	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Introduction
to Quadratic ResiduesIntroduction
to Quadratic
ReciprocityClyde KertzerQuadratic Residue
For a and m coprime, if $x^2 \equiv a \mod m$ has a solution $\longrightarrow a$ is
a quadratic residue

Introduction to Quadratic Reciprocity

Clyde Kertzer

Quadratic Residue

For a and m coprime, if $x^2 \equiv a \mod m$ has a solution $\longrightarrow a$ is a **quadratic residue**

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

If it has no solution \longrightarrow nonresidue. Quadratic residues mod 5:

Introduction to Quadratic Reciprocity

Clyde Kertzer

Quadratic Residue

For a and m coprime, if $x^2 \equiv a \mod m$ has a solution $\longrightarrow a$ is a **quadratic residue**

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If it has no solution \longrightarrow nonresidue. Quadratic residues mod 5: Residue system: {0,1,2,3,4} (0 is trivial)

Introduction to Quadratic Reciprocity

Clyde Kertzer

Quadratic Residue

For a and m coprime, if $x^2 \equiv a \mod m$ has a solution $\longrightarrow a$ is a **quadratic residue**

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If it has no solution \longrightarrow nonresidue. Quadratic residues mod 5: Residue system: $\{0, 1, 2, 3, 4\}$ (0 is trivial) $x^2 \equiv 1 \mod 5 \longrightarrow 1$

Introduction to Quadratic Reciprocity Clyde Kertzer

Quadratic Residue

For a and m coprime, if $x^2 \equiv a \mod m$ has a solution $\longrightarrow a$ is a **quadratic residue**

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If it has no solution \longrightarrow nonresidue. Quadratic residues mod 5: Residue system: $\{0, 1, 2, 3, 4\}$ (0 is trivial) $x^2 \equiv 1 \mod 5 \longrightarrow 1$ $x^2 \equiv 2 \mod 5 \longrightarrow$ nothing, nonresidue

Introduction to Quadratic Reciprocity Clyde Kertzer

Quadratic Residue

For a and m coprime, if $x^2 \equiv a \mod m$ has a solution $\longrightarrow a$ is a **quadratic residue**

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If it has no solution \longrightarrow nonresidue. Quadratic residues mod 5: Residue system: $\{0, 1, 2, 3, 4\}$ (0 is trivial) $x^2 \equiv 1 \mod 5 \longrightarrow 1$ $x^2 \equiv 2 \mod 5 \longrightarrow$ nothing, nonresidue $x^2 \equiv 3 \mod 5 \longrightarrow$ nothing, nonresidue

Introduction to Quadratic Reciprocity Clyde Kertzer

Quadratic Residue

For a and m coprime, if $x^2 \equiv a \mod m$ has a solution $\longrightarrow a$ is a **quadratic residue**

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If it has no solution \longrightarrow nonresidue. Quadratic residues mod 5: Residue system: $\{0, 1, 2, 3, 4\}$ (0 is trivial) $x^2 \equiv 1 \mod 5 \longrightarrow 1$ $x^2 \equiv 2 \mod 5 \longrightarrow$ nothing, nonresidue $x^2 \equiv 3 \mod 5 \longrightarrow$ nothing, nonresidue $x^2 \equiv 4 \mod 5 \longrightarrow 2$

Introduction to Quadratic Reciprocity Clyde Kertzer

Quadratic Residue

For a and m coprime, if $x^2 \equiv a \mod m$ has a solution $\longrightarrow a$ is a **quadratic residue**

If it has no solution \longrightarrow nonresidue. Quadratic residues mod 5: Residue system: $\{0, 1, 2, 3, 4\}$ (0 is trivial) $x^2 \equiv 1 \mod 5 \longrightarrow 1$ $x^2 \equiv 2 \mod 5 \longrightarrow$ nothing, nonresidue $x^2 \equiv 3 \mod 5 \longrightarrow$ nothing, nonresidue $x^2 \equiv 4 \mod 5 \longrightarrow 2$ Conclusion: quadratic residues are 1 and 4 quadratic

Conclusion: quadratic residues are 1 and 4, quadratic nonresidues are 2 and 3.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

	Wilson's Theorem
Introduction to Quadratic Reciprocity Clyde Kertzer	

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆

Proof of Wilson's Theorem

Introduction to Quadratic Reciprocity

Clyde Kertzer

Suppose that
$$a^2 \equiv 1 \mod p$$
, then $p \mid a^2 - 1$ and $p \mid (a-1)(a+1)$.

Proof of Wilson's Theorem

Introduction to Quadratic Reciprocity

Clyde Kertzer

Suppose that
$$a^2 \equiv 1 \mod p$$
, then $p \mid a^2 - 1$ and $p \mid (a-1)(a+1)$.
Then $p \mid a-1$ or $p \mid a+1$.

Proof of Wilson's Theorem

Introduction to Quadratic Reciprocity

Clyde Kertzer

Suppose that $a^2 \equiv 1 \mod p$, then $p \mid a^2 - 1$ and $p \mid (a-1)(a+1)$. Then $p \mid a-1$ or $p \mid a+1$. Follows $a \equiv 1 \mod p$ or $a \equiv -1 \mod p$ Consider $(p-1)! \equiv 1 \cdot (2 \cdot 3 \cdots (p-2))(p-1) \mod p$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで
Proof of Wilson's Theorem

Introduction to Quadratic Reciprocity

Clyde Kertzer

Suppose that $a^2 \equiv 1 \mod p$, then $p \mid a^2 - 1$ and $p \mid (a-1)(a+1)$. Then $p \mid a-1$ or $p \mid a+1$. Follows $a \equiv 1 \mod p$ or $a \equiv -1 \mod p$ Consider $(p-1)! \equiv 1 \cdot (2 \cdot 3 \cdots (p-2))(p-1) \mod p$. Recall that every number has a unique inverse (mod p). Then

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof of Wilson's Theorem

Introduction to Quadratic Reciprocity

Clyde Kertzer

Suppose that $a^2 \equiv 1 \mod p$, then $p \mid a^2 - 1$ and $p \mid (a - 1)(a + 1)$. Then $p \mid a - 1$ or $p \mid a + 1$. Follows $a \equiv 1 \mod p$ or $a \equiv -1 \mod p$ Consider $(p - 1)! \equiv 1 \cdot (2 \cdot 3 \cdots (p - 2))(p - 1) \mod p$. Recall that every number has a unique inverse (mod p). Then

$$(p-1)! \equiv 1 \cdot 2^{-1} 3^{-1} \cdots (p-2) \cdot (p-2)^{-1} (p-1) \mod p$$

 $\equiv (p-1) \mod p$
 $\equiv -1 \mod p$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

	Legendre Symbol
Introduction to Quadratic Reciprocity Clyde Kertzer	

- ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

= 1, if *a* is a quadratic residue

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

	Fermat's Little Theorem
Introduction to Quadratic Reciprocity Clyde Kertzer	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

	Proof of Fermat's Little Theorem
Introduction to Quadratic Reciprocity Clyde Kertzer	

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆

	Proof of Fermat's Little Theorem
Introduction to Quadratic Reciprocity Clyde Kertzer	Consider the smallest residues of { <i>a</i> , 2 <i>a</i> , 3 <i>a</i> , , <i>pa</i> }

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆

Proof of Fermat's Little Theorem Introduction to Quadratic Reciprocity Clyde Kertzer Consider the smallest residues of $\{a, 2a, 3a, \dots, pa\}$ We want to show all elements in this list are incongruent mod р.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction to Quadratic Reciprocity

Clyde Kertzer

Consider the smallest residues of $\{a, 2a, 3a, \dots, pa\}$ We want to show all elements in this list are incongruent mod p. Show that their residues are $\{1, 2, 3, \dots, p-1\}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction to Quadratic Reciprocity

Clyde Kertzer

Consider the smallest residues of $\{a, 2a, 3a, \ldots, pa\}$ We want to show all elements in this list are incongruent mod p. Show that their residues are $\{1, 2, 3, \ldots, p-1\}$ Take ka and la, where k is some integer such that $1 \le k \ne l \le p$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction to Quadratic Reciprocity

Clyde Kertzer

Consider the smallest residues of $\{a, 2a, 3a, ..., pa\}$ We want to show all elements in this list are incongruent mod p. Show that their residues are $\{1, 2, 3, ..., p-1\}$ Take ka and la, where k is some integer such that $1 \le k \ne l \le p$. Suppose $ka \equiv la \mod p$, then $p \mid (k - l)a$, then $p \mid (k - 1)$ or $p \mid a$. We know p cannot divide by a, they are coprime.

A D N A 目 N A E N A E N A B N A C N

Introduction to Quadratic Reciprocity

Clyde Kertzer

Consider the smallest residues of $\{a, 2a, 3a, \ldots, pa\}$ We want to show all elements in this list are incongruent mod p. Show that their residues are $\{1, 2, 3, \ldots, p-1\}$ Take ka and la, where k is some integer such that $1 \le k \ne l \le p$. Suppose $ka \equiv la \mod p$, then $p \mid (k - l)a$, then $p \mid (k - 1)$ or $p \mid a$. We know p cannot divide by a, they are coprime. We also know $p \mid (k - l)a$ is not possible because of $1 \le k \ne l \le p$.

A D N A 目 N A E N A E N A B N A C N

	Proof of Fermat's Little Theorem
Introduction to Quadratic Reciprocity Clyde Kertzer	

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆

	Proof of Fermat's Little Theorem
Introduction to Quadratic Reciprocity Clyde Kertzer	Now we take the product of each list.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆

	Proof of Fermat's Little Theorem	
Introduction to Quadratic Reciprocity		
Clyde Kertzer	Now we take the product of each list.	
	$a \cdot 2a \cdots (p-1)a \equiv (p-1)! \mod p$	
	$a^{p-1}(p-1)!\equiv (p-1)!mod p$ $a^{p-1}\equiv 1mod p$	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

	Euler's Criterion
Introduction to Quadratic Reciprocity Clyde Kertzer	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Proof of Euler's Criterion Introduction to Quadratic Reciprocity Clyde Kertzer

Introduction to Quadratic Reciprocity

Clyde Kertzer

Case 1:
$$\left(\frac{a}{p}\right) = 1$$

Introduction to Quadratic Reciprocity

Clyde Kertzer

Case 1:
$$\left(\frac{a}{p}\right) = 1$$

We have some x_0 such that $x_0^2 \equiv a \mod p$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction to Quadratic Reciprocity

Clyde Kertzer

Case 1:
$$\left(\frac{a}{p}\right) = 1$$

We have some x_0 such that $x_0^2 \equiv a \mod p$ $a^{\left(\frac{p-1}{2}\right)} = (x_0^2)^{\left(\frac{p-1}{2}\right)} = x_0^{p-1} \equiv 1 \mod p$ (By Fermat's Little Theorem).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Introduction to Quadratic Reciprocity

Clyde Kertzer

Case 1:
$$\left(\frac{a}{p}\right) = 1$$

We have some x_0 such that $x_0^2 \equiv a \mod p$
 $a^{\left(\frac{p-1}{2}\right)} = (x_0^2)^{\left(\frac{p-1}{2}\right)} = x_0^{p-1} \equiv 1 \mod p$ (By Fermat's Little Theorem).
Case 2: $\left(\frac{a}{p}\right) = -1$

Introduction to Quadratic Reciprocity

Clyde Kertzer

Case 1:
$$\left(\frac{a}{p}\right) = 1$$

We have some x_0 such that $x_0^2 \equiv a \mod p$
 $a^{\left(\frac{p-1}{2}\right)} = (x_0^2)^{\left(\frac{p-1}{2}\right)} = x_0^{p-1} \equiv 1 \mod p$ (By Fermat's Little Theorem).
Case 2: $\left(\frac{a}{p}\right) = -1$
For each $1 \le k \le p - 1$ we have a solution to the solution to $kx \equiv a \mod p, x \equiv k^{-1}a \mod p$. We also know that $x \ne k \mod p$ because if it were, k would be a quadratic residue.

Proof of Euler's Criterion Introduction to Quadratic Reciprocity Clyde Kertzer Note: $1, 2, \ldots, p-1$ can be split in to factor pairs of *a*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction to Quadratic Reciprocity

Clyde Kertzer

Note: $1, 2, \ldots, p-1$ can be split in to factor pairs of *a*. Now we see $a^{\frac{p-1}{2}} = (1)(2)\cdots(p-1) = (p-1)! \equiv -1 \mod p$ (This is by Wilson's Theorem).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

	Gauss' Lemma
Introduction to Quadratic Reciprocity Clyde Kertzer	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Gauss' Lemma Introduction to Quadratic Reciprocity Clyde Kertzer Gauss' Lemma For any odd prime p, with coprime a. Consider the integers $a, 2a, 3a, \ldots, \frac{p-1}{2}a$ and their smallest residues mod p. If n denotes the number of residues that are greater than $\frac{p}{2}$, then

$$\left(\frac{a}{p}\right) = (-1)^n.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

	Example
Introduction to Quadratic Reciprocity Clyde Kertzer	

・ロト・日本・モート・モー うべの

Example

Introduction to Quadratic Reciprocity

Clyde Kertzer

Let
$$p = 13$$
 and $a = 5$
Example

Introduction to Quadratic Reciprocity

Clyde Kertzer

Let
$$p = 13$$
 and $a = 5$
 $\frac{p-1}{2} = \frac{13-1}{2} = \frac{12}{2} = 6$, $\frac{p}{2} = \frac{13}{2}$

(ロ)、(型)、(E)、(E)、 E) の(()

- -

Example

.

Introduction to Quadratic Reciprocity

Clyde Kertzer

Let
$$p = 13$$
 and $a = 5$
 $\frac{p-1}{2} = \frac{13-1}{2} = \frac{12}{2} = 6$, $\frac{p}{2} = \frac{13}{2}$

- -

- $5 * 1 = 5 \equiv 5 \mod 13$
- $5 * 2 = 10 \equiv 10 \mod 13$
- $5 * 3 = 15 \equiv 2 \mod{13}$
- $5 * 4 = 20 \equiv 7 \mod{13}$
- $5 * 5 = 25 \equiv 12 \mod 13$
- $5 * 6 = 30 \equiv 4 \mod{13}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

	Example
Introduction to Quadratic Reciprocity Clyde Kertzer	

・ロト・日本・モート・モー うべの

	Example
Introduction to Quadratic Reciprocity Clyde Kertzer	Our list is: 2,4,5,7,10,12 \longrightarrow 3 are greater than $\frac{13}{2}$

Example Introduction to Quadratic Reciprocity Clyde Kertzer Ours list is: 2.4.5.7.10.12 are 3 are presented then ¹³

Our list is: 2,4,5,7,10,12 \longrightarrow 3 are greater than $\frac{13}{2}$

$$\left(\frac{5}{13}\right) = (-1)^3 = -1$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example

Introduction to Quadratic Reciprocity

Clyde Kertzer

Our list is: 2,4,5,7,10,12 \longrightarrow 3 are greater than $\frac{13}{2}$

$$\left(\frac{5}{13}\right) = (-1)^3 = -1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusion: 5 is a quadratic nonresidue mod 13.

Proof	of G	auss'	Lem	ıma
-------	------	-------	-----	-----

Introduction to Quadratic Reciprocity		
Clvde Kertzer		
, , , , , , , , , , , , , , , , , , ,		

	Proof of Gauss' Lemma
Introduction to Quadratic Reciprocity Clyde Kertzer	Proof

	Proof of Gauss' Lemma
Introduction to Quadratic Reciprocity Clyde Kertzer	Proof Consider the smallest residues of

◇ 2 2 → 4 回 > 4 回 > 4 回 > 4 回 >

	Proof of Gauss' Lemma
Introduction to Quadratic Reciprocity	
Clyde Kertzer	Proof Consider the smallest residues of
	(1) $a, 2a, 3a, \ldots, \frac{p-1}{2}a$

Proof of Gauss' Lemma Introduction to Quadratic Reciprocity Clyde Kertzer Proof Consider the smallest residues of (1) $a, 2a, 3a, \ldots, \frac{p-1}{2}a$ Let r_1, r_2, \ldots, r_n be the residues (mod p) from (1) that are $> \frac{p}{2}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Proof of Gauss' Lemma Introduction to Quadratic Reciprocity Clyde Kertzer Proof Consider the smallest residues of (1) $a, 2a, 3a, \ldots, \frac{p-1}{2}a$ Let r_1, r_2, \ldots, r_n be the residues (mod p) from (1) that are $> \frac{p}{2}$ Let s_1, s_2, \ldots, s_m be the residues (mod p) from (1) that are $< \frac{p}{2}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof of Gauss' Lemma Introduction to Quadratic Reciprocity Clyde Kertzer Proof Consider the smallest residues of (1) $a, 2a, 3a, \ldots, \frac{p-1}{2}a$ Let r_1, r_2, \ldots, r_n be the residues (mod p) from (1) that are $> \frac{p}{2}$ Let s_1, s_2, \ldots, s_m be the residues (mod p) from (1) that are $<\frac{p}{2}$ Now consider $p - r_1, p - r_2, ..., p - r_n, s_1, ..., s_m$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Proof of Gauss' Lemma Introduction to Quadratic Reciprocity Clyde Kertzer Proof Consider the smallest residues of (1) $a, 2a, 3a, \ldots, \frac{p-1}{2}a$ Let r_1, r_2, \ldots, r_n be the residues (mod p) from (1) that are $> \frac{p}{2}$ Let s_1, s_2, \ldots, s_m be the residues (mod p) from (1) that are $< \frac{p}{2}$ Now consider $p - r_1, p - r_2, ..., p - r_n, s_1, ..., s_m$ We want to show this list is incongruent (mod p)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof of Gauss' Lemma Introduction to Quadratic Reciprocity Clyde Kertzer Proof Consider the smallest residues of (1) $a, 2a, 3a, \ldots, \frac{p-1}{2}a$ Let r_1, r_2, \ldots, r_n be the residues (mod p) from (1) that are $> \frac{p}{2}$ Let s_1, s_2, \ldots, s_m be the residues (mod p) from (1) that are $< \frac{p}{2}$ Now consider $p - r_1, p - r_2, ..., p - r_n, s_1, ..., s_m$ We want to show this list is incongruent (mod p) First half of list is different, second half is different.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Proof	of G	auss'	Lem	ıma
-------	------	-------	-----	-----

Introduction to Quadratic Reciprocity		
Clvde Kertzer		
, , , , , , , , , , , , , , , , , , ,		

Introduction to Quadratic Reciprocity

Suppose for the sake of contradiction

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Clyde Kertzer

Introduction to Quadratic Reciprocity Clyde Kertzer

Suppose for the sake of contradiction

$$p - r_i \equiv s_j \mod p$$

 $-r_i \equiv s_j \mod p$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Notice both r_i and s_j are multiples of a

Introduction to Quadratic Reciprocity Clyde Kertzer

Suppose for the sake of contradiction

$$p - r_i \equiv s_j \mod p$$

 $-r_i \equiv s_j \mod p$

Notice both r_i and s_j are multiples of a

$$-k_i a \equiv k_j a \mod p$$

 $-k_i \equiv k_j \mod p$

These k values are taken from $a, 2a, 3a, \ldots, \frac{p-1}{2}a$, which is not possible, because all are positive.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof	of G	auss'	Lem	ıma
-------	------	-------	-----	-----

Introduction to Quadratic Reciprocity		
Clvde Kertzer		
, , , , , , , , , , , , , , , , , , ,		

	Proof of Gauss' Lemma
Introduction to Quadratic Reciprocity Clyde Kertzer	
	We have shown: $\{p - r_1, p - r_2, \dots, p - r_n, s_1, \dots, s_m\} = \{1, 2, \dots, \frac{p-1}{2}\}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Introduction to Quadratic Reciprocity

Clyde Kertzer

We have shown:

$$\{p-r_1, p-r_2, \ldots, p-r_n, s_1, \ldots, s_m\} = \{1, 2, \ldots, \frac{p-1}{2}\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We want to find the product of both sides.

Proof	of G	auss'	Lem	ıma
-------	------	-------	-----	-----

Introduction to Quadratic Reciprocity

Clyde Kertzer

$$(p - r_1) \cdots (p - r_n) s_1 \cdots s_m \equiv 1 \cdot 2 \cdots \frac{p - 1}{2} \mod p$$
$$(-r_1) \cdots (-r_n) s_1 \cdots s_m \equiv \left(\frac{p - 1}{2}\right)! \mod p$$
$$(-1)^n r_1 \cdots r_n s_1 \cdots s_m \equiv \left(\frac{p - 1}{2}\right)! \mod p$$
$$(-1)^n a \cdot 2a \cdot 3a \cdots \frac{p - 1}{2} a \equiv \left(\frac{p - 1}{2}\right)! \mod p$$
$$(-1)^n a^{\frac{p - 1}{2}} \left(\frac{p - 1}{2}\right)! \equiv \left(\frac{p - 1}{2}\right)! \mod p$$
$$(-1)^n a^{\frac{p - 1}{2}} \equiv 1 \mod p$$
$$a^{\frac{p - 1}{2}} \equiv (-1)^n \mod p$$

	Quadratic Reciprocity
Introduction to Quadratic Reciprocity Clyde Kertzer	

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @