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≡ 3 mod 5 + 1 mod 5

≡ 4 mod 5
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mod4 −→ {1, 3}
mod12 −→ {1, 5, 7, 11}
mod11 −→ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
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Quadratic Residues

Quadratic Residue

For a and m coprime, if x2 ≡ a mod m has a solution −→ a is
a quadratic residue

If it has no solution −→ nonresidue.
Quadratic residues mod 5:
Residue system: {0, 1, 2, 3, 4} (0 is trivial)
x2 ≡ 1 mod 5 −→ 1
x2 ≡ 2 mod 5 −→ nothing, nonresidue
x2 ≡ 3 mod 5 −→ nothing, nonresidue
x2 ≡ 4 mod 5 −→ 2
Conclusion: quadratic residues are 1 and 4, quadratic
nonresidues are 2 and 3.
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Proof of Wilson’s Theorem

Suppose that a2 ≡ 1 mod p, then p | a2 − 1 and
p | (a− 1)(a+ 1).
Then p | a− 1 or p | a+ 1.
Follows a ≡ 1 mod p or a ≡ −1 mod p
Consider (p − 1)! ≡ 1 · (2 · 3 · · · (p − 2))(p − 1) mod p.
Recall that every number has a unique inverse (mod p). Then

(p − 1)! ≡ 1 · 2−13−1 · · · (p − 2) · (p − 2)−1(p − 1) mod p

≡ (p − 1) mod p

≡ −1 mod p
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a

p

)
= 1, if a is a quadratic residue
= −1, if a is a quadratic nonresidue
= 0, if p | a
Find

(
2
5

)
:

Is there a solution to x2 ≡ 2 mod 5?
No −→

(
2
5

)
= −1
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Proof of Fermat’s Little Theorem

Consider the smallest residues of {a, 2a, 3a, . . . , pa}
We want to show all elements in this list are incongruent mod
p.
Show that their residues are {1, 2, 3, . . . , p − 1}
Take ka and la, where k is some integer such that
1 ≤ k ̸= l ≤ p.
Suppose ka ≡ la mod p, then p | (k − l)a, then p | (k − 1) or
p | a. We know p cannot divide by a, they are coprime.
We also know p | (k − l)a is not possible because of
1 ≤ k ̸= l ≤ p.
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Proof of Fermat’s Little Theorem

Now we take the product of each list.

a · 2a · · · (p − 1)a ≡ (p − 1)! mod p

ap−1(p − 1)! ≡ (p − 1)! mod p

ap−1 ≡ 1 mod p
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Proof of Euler’s Criterion

Case 1:
(

a
p

)
= 1

We have some x0 such that x20 ≡ a mod p

a(
p−1
2 ) = (x20 )

( p−1
2 ) = xp−1

0 ≡ 1 mod p (By Fermat’s Little
Theorem).

Case 2:
(

a
p

)
= −1

For each 1 ≤ k ≤ p − 1 we have a solution to the solution to
kx ≡ a mod p, x ≡ k−1a mod p. We also know that
x ̸≡ k mod p because if it were, k would be a quadratic residue.
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Proof of Euler’s Criterion

Note: 1, 2, . . . , p − 1 can be split in to factor pairs of a.

Now we see a
p−1
2 = (1)(2) · · · (p − 1) = (p − 1)! ≡ −1 mod p

(This is by Wilson’s Theorem).
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Gauss’ Lemma

For any odd prime p, with coprime a. Consider the integers

a, 2a, 3a, . . . ,
p − 1

2
a

and their smallest residues mod p. If n denotes the number of
residues that are greater than p

2 , then(
a

p

)
= (−1)n.
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Example

Let p = 13 and a = 5
p−1
2 = 13−1

2 = 12
2 = 6, p

2 = 13
2

5 ∗ 1 = 5 ≡ 5 mod 13

5 ∗ 2 = 10 ≡ 10 mod 13

5 ∗ 3 = 15 ≡ 2 mod 13

5 ∗ 4 = 20 ≡ 7 mod 13

5 ∗ 5 = 25 ≡ 12 mod 13

5 ∗ 6 = 30 ≡ 4 mod 13
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Example

Our list is: 2,4,5,7,10,12 −→ 3 are greater than 13
2(

5

13

)
= (−1)3 = −1

Conclusion: 5 is a quadratic nonresidue mod 13.
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Proof of Gauss’ Lemma

Proof
Consider the smallest residues of

(1) a, 2a, 3a, . . . ,
p − 1

2
a

Let r1, r2, . . . , rn be the residues (mod p) from (1) that are > p
2

Let s1, s2, . . . , sm be the residues (mod p) from (1) that are
< p

2
Now consider p − r1, p − r2, . . . , p − rn, s1, . . . , sm
We want to show this list is incongruent (mod p)
First half of list is different, second half is different.
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Proof of Gauss’ Lemma

Suppose for the sake of contradiction

p − ri ≡ sj mod p

−ri ≡ sj mod p

Notice both ri and sj are multiples of a

−kia ≡ kja mod p

−ki ≡ kj mod p

These k values are taken from a, 2a, 3a, . . . , p−1
2 a, which is not

possible, because all are positive.
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Proof of Gauss’ Lemma

We have shown:

{p − r1, p − r2, . . . , p − rn, s1, . . . , sm} = {1, 2, . . . , p − 1

2
}

We want to find the product of both sides.
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Quadratic Reciprocity

Quadratic Reciprocity

Let p and q be distinct odd primes. Then(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2

Equals 1 if p or q ≡ 1 mod 4
Equals −1 if p ≡ q ≡ 3 mod 4



Introduction
to Quadratic
Reciprocity

Clyde Kertzer

Quadratic Reciprocity

Quadratic Reciprocity

Let p and q be distinct odd primes. Then(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2

Equals 1 if p or q ≡ 1 mod 4

Equals −1 if p ≡ q ≡ 3 mod 4



Introduction
to Quadratic
Reciprocity

Clyde Kertzer

Quadratic Reciprocity

Quadratic Reciprocity

Let p and q be distinct odd primes. Then(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2

Equals 1 if p or q ≡ 1 mod 4
Equals −1 if p ≡ q ≡ 3 mod 4


