Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Apollonian Circle Packings \& the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards
University of Colorado Boulder

Oct 10, 2023

Descartes Quadruples

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Descartes Quadruples

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Definition

A Descartes Quadruple is a set of four mutually tangent circles with disjoint interiors.

Descartes Quadruples

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Definition

A Descartes Quadruple is a set of four mutually tangent circles with disjoint interiors.

Descartes Quadruples

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Definition

A Descartes Quadruple is a set of four mutually tangent circles with disjoint interiors.

Descartes Quadruples

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Definition

A Descartes Quadruple is a set of four mutually tangent circles with disjoint interiors.

We can only have at most one "inverted" circle!

Descartes Quadruples

Apollonian
Circle
Packings \&
the
Local-Global
Conjecture
Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James Rickards

Definition

A Descartes Quadruple is a set of four mutually tangent circles with disjoint interiors.

We can only have at most one "inverted" circle!

Theorem of Apollonius

If three circles are mutually tangent, there are two other circles that are tangent to all three.

The Descartes Equation

Apollonian Circle
Packings \& the
Local-Global
Conjecture
Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

The Descartes Equation

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Definition

The curvature of a circle with radius r is defined to be $1 / r$.

The Descartes Equation

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Definition

The curvature of a circle with radius r is defined to be $1 / r$.

The Descartes Equation

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Definition

The curvature of a circle with radius r is defined to be $1 / r$.

Circle with infinite radius

The Descartes Equation

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James Rickards

Definition

The curvature of a circle with radius r is defined to be $1 / r$.

Circle with infinite radius

Descartes Equation

If four mutually tangent circles have curvatures a, b, c, d then

$$
(a+b+c+d)^{2}=2\left(a^{2}+b^{2}+c^{2}+d^{2}\right)
$$

Apollonian Circle Packings

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

If a, b, c, d are integers, the rest are also integers!

Apollonian Circle Packings

Apollonian
Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

If a, b, c, d are integers, the rest are also integers!

Apollonian Circle Packings

Apollonian
Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

If a, b, c, d are integers, the rest are also integers!

Apollonian Circle Packings

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Apollonian Circle Packings

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Apollonian Circle Packings

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Apollonian Circle Packings

Apollonian
Circle
Packings \& the
Local-Global
Conjecture
Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Apollonian Circle Packings

Apollonian
Circle
Packings \&
the
Local-Global
Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

$$
[-6,11,14,23]^{1}
$$

${ }^{1}$ Images from: AMS "When Kissing Involves Trigonometry"

Apollonian Circle Packings

Apollonian
Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

$$
[-6,11,14,23]
$$

Apollonian Circle Packings

Apollonian

Circle

Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

$[-6,11,14,23]$ reduces to $[-6,11,14,15]$

Apollonian Circle Packings

Apollonian
Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer

Haag,
Katherine E. Stange, and James
Rickards

$$
[-6,11,14,15]
$$

Apollonian Circle Packings

Apollonian
Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Apollonian Circle Packings

Apollonian
Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Notice: Once $-6,11,14,15$ are set, no room for $1,2,3,4,5$, $6,7,8,9,10,12,13,16,17, \ldots$

Curvatures Mod 5

Apollonian Circle
Packings \& the
Local-Global
Conjecture
Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Curvatures Mod 5

Apollonian
Circle

Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James Rickards

Curvatures Mod 3

Apollonian Circle
Packings \& the
Local-Global
Conjecture
Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Curvatures Mod 3

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James Rickards

Allowed Residues

Apollonian Circle
Packings \& the
Local-Global
Conjecture
Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Allowed Residues

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Theorem (Fuchs)

If a congruence obstruction appears, then it appears modulo 24.

Allowed Residues

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James Rickards

Theorem (Fuchs)

If a congruence obstruction appears, then it appears modulo 24.

Type	Allowed Residues
$(6,1)$	$0,1,4,9,12,16$
$(6,5)$	$0,5,8,12,20,21$
$(6,13)$	$0,4,12,13,16,21$
$(6,17)$	$0,8,9,12,17,20$
$(8,7)$	$3,6,7,10,15,18,19,22$
$(8,11)$	$2,3,6,11,14,15,18,23$

Allowed Residues

Apollonian Circle
Packings \& the
Local-Global
Conjecture
Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Allowed Residues

Apollonian
Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

$[-6,11,14,15]$

Type	Allowed Residues
$(6,1)$	$0,1,4,9,12,16$
$(6,5)$	$0,5,8,12,20,21$
$(6,13)$	$0,4,12,13,16,21$
$(6,17)$	$0,8,9,12,17,20$
$(8,7)$	$3,6,7,10,15,18,19,22$
$(8,11)$	$2,3,6,11,14,15,18,23$

Local-to-global

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Local-to-global

Apollonian Circle
Packings \&
the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Conjecture. (Graham-Lagarias-Mallows-Wilks-Yan 2003, Fuchs-Sanden 2011)

In a primitive integral Apollonian circle packing, curvatures satisfy a congruence condition modulo 24 , and all sufficiently large integers satisfying this condition appear.

Local-to-global

Conjecture. (Graham-Lagarias-Mallows-Wilks-Yan 2003, Fuchs-Sanden 2011)

In a primitive integral Apollonian circle packing, curvatures satisfy a congruence condition modulo 24 , and all sufficiently large integers satisfying this condition appear.

Theorem (Bourgain-Kontorovich)

The number of missing curvatures up to N is at most $O\left(N^{1-\eta}\right)$ for some effectively computable $\eta>0$.

Local-to-global

Conjecture. (Graham-Lagarias-Mallows-Wilks-Yan 2003, Fuchs-Sanden 2011)

In a primitive integral Apollonian circle packing, curvatures satisfy a congruence condition modulo 24 , and all sufficiently large integers satisfying this condition appear.

Theorem (Bourgain-Kontorovich)

The number of missing curvatures up to N is at most $O\left(N^{1-\eta}\right)$ for some effectively computable $\eta>0$.

Body of work by Graham-Lagarias-Mallows-Wilks-Yan, Sarnak, Bourgain-Fuchs, Bourgain-Kontorovich, Fuchs-S.-Zhang

Theoretical Tool: Quadratic Forms

Apollonian Circle
Packings \& the
Local-Global
Conjecture
Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Theoretical Tool: Quadratic Forms

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

There is a bijection between

Theoretical Tool: Quadratic Forms

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

There is a bijection between

1. curvatures of circles tangent to fixed mother circle of curvature, and

Theoretical Tool: Quadratic Forms

Apollonian Circle
Packings \& the
Local-Global Conjecture Haag,
Katherine E. Stange, and James
Rickards

There is a bijection between

1. curvatures of circles tangent to fixed mother circle of curvature, and
2. $\left\{f_{a}(x, y)-a: \operatorname{gcd}(x, y)=1\right\}$

Theoretical Tool: Quadratic Forms

Apollonian Circle
Packings \& the
Local-Global Conjecture

There is a bijection between

1. curvatures of circles tangent to fixed mother circle of curvature, and
2. $\left\{f_{a}(x, y)-a: \operatorname{gcd}(x, y)=1\right\}$
where f_{a} is a primitive integral binary quadratic form of discriminant $-4 a^{2}$ associated to the 'mother circle'.

Computational Evidence

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Computational Evidence

Apollonian Circle
Packings \& the
Local-Global Conjecture

Fuchs-Sanden computed curvatures up to:

$$
\begin{gathered}
10^{8} \text { for }(-1,2,2,3) \\
5 \cdot 10^{8} \text { for }(-11,21,24,28)
\end{gathered}
$$

and observed for $(-11,21,24,28)$, there were still a small number (up to 0.013%) of missing curvatures in the range $\left(4 \cdot 10^{8}, 5 \cdot 10^{8}\right)$ for residue classes $0,4,12,16 \bmod 24$.

Summer 2023 REU

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Summer 2023 REU

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

1. Fix a pair of curvatures, and study what packings contain them.

Summer 2023 REU

Apollonian Circle
Packings \& the
Local-Global Conjecture

1. Fix a pair of curvatures, and study what packings contain them.
2. Plot: for an admissible pair of residue classes modulo 24 , black dot if no packing has that pair.

Summer 2023 REU

Apollonian Circle
Packings \& the
Local-Global Conjecture Haag,
Katherine E. Stange, and James Rickards

1. Fix a pair of curvatures, and study what packings contain them.
2. Plot: for an admissible pair of residue classes modulo 24 , black dot if no packing has that pair.
3. Local-global: finitely many black dots on any row or column.

Typical graph

Apollonian Circle
Packings \& the Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Typical graph

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Residue classes $0(\bmod 24)$ and $12(\bmod 24)$ (Summer Haag)

One weird graph

Apollonian Circle
Packings \& the
Local-Global
Conjecture
Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

One weird graph

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Residue classes $0(\bmod 24)$ and $8(\bmod 24)$ (Summer Haag)

The conjecture is false

Apollonian Circle
Packings \& the
Local-Global
Conjecture
Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

The conjecture is false

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Theorem (Haag-Kertzer-Rickards-S.)

The Apollonian circle packing generated by quadruple $(-3,5,8,8)$ has no square curvatures.

A circle has a 'residuosity'

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

A circle has a 'residuosity'

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

1. All curvatures n in this packing have $n \equiv 0,1(\bmod 4)$.

A circle has a 'residuosity'

Apollonian Circle
Packings \& the
Local-Global Conjecture Haag,
Katherine E. Stange, and James
Rickards

1. All curvatures n in this packing have $n \equiv 0,1(\bmod 4)$.
2. Fix circle \mathcal{C} of curvature n; tangent curvatures $f_{\mathcal{C}}(x, y)-n$ of discriminant $-4 n^{2}$

A circle has a 'residuosity'

Apollonian Circle
Packings \& the
Local-Global Conjecture

Rickards

1. All curvatures n in this packing have $n \equiv 0,1(\bmod 4)$.
2. Fix circle \mathcal{C} of curvature n; tangent curvatures $f_{\mathcal{C}}(x, y)-n$ of discriminant $-4 n^{2}$
3. Modulo n and equivalence, values are $A x^{2}$: only quadratic residues or only non-residues.

A circle has a 'residuosity'

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

1. All curvatures n in this packing have $n \equiv 0,1(\bmod 4)$.
2. Fix circle \mathcal{C} of curvature n; tangent curvatures $f_{\mathcal{C}}(x, y)-n$ of discriminant $-4 n^{2}$
3. Modulo n and equivalence, values are $A x^{2}$: only quadratic residues or only non-residues.
4. Define $\chi_{2}(\mathcal{C})=1$ if residues, -1 otherwise.

A packing has a 'residuosity'

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

1. Suppose that $\mathcal{C}_{1}, \mathcal{C}_{2}$ in a packing are tangent, having non-zero coprime curvatures a and b respectively.

A packing has a 'residuosity'

Apollonian Circle
Packings \& the
Local-Global Conjecture

Rickards

1. Suppose that $\mathcal{C}_{1}, \mathcal{C}_{2}$ in a packing are tangent, having non-zero coprime curvatures a and b respectively.
2. Quadratic reciprocity:

$$
\chi_{2}\left(\mathcal{C}_{1}\right) \chi_{2}\left(\mathcal{C}_{2}\right)=\left(\frac{a}{b}\right)\left(\frac{b}{a}\right)=1 \Longrightarrow \chi_{2}\left(\mathcal{C}_{1}\right)=\chi_{2}\left(\mathcal{C}_{2}\right) .
$$

A packing has a 'residuosity'

Apollonian Circle
Packings \& the
Local-Global Conjecture

Rickards

1. Suppose that $\mathcal{C}_{1}, \mathcal{C}_{2}$ in a packing are tangent, having non-zero coprime curvatures a and b respectively.
2. Quadratic reciprocity:

$$
\chi_{2}\left(\mathcal{C}_{1}\right) \chi_{2}\left(\mathcal{C}_{2}\right)=\left(\frac{a}{b}\right)\left(\frac{b}{a}\right)=1 \Longrightarrow \chi_{2}\left(\mathcal{C}_{1}\right)=\chi_{2}\left(\mathcal{C}_{2}\right) .
$$

3. Any two circles in the packing are connected by a path of pairwise coprime curvatures.

A packing has a 'residuosity'

Apollonian Circle

1. Suppose that $\mathcal{C}_{1}, \mathcal{C}_{2}$ in a packing are tangent, having non-zero coprime curvatures a and b respectively.
2. Quadratic reciprocity:

$$
\chi_{2}\left(\mathcal{C}_{1}\right) \chi_{2}\left(\mathcal{C}_{2}\right)=\left(\frac{a}{b}\right)\left(\frac{b}{a}\right)=1 \Longrightarrow \chi_{2}\left(\mathcal{C}_{1}\right)=\chi_{2}\left(\mathcal{C}_{2}\right) .
$$

3. Any two circles in the packing are connected by a path of pairwise coprime curvatures.
4. So $\chi_{2}(\mathcal{C})$ is independent of the choice of circle \mathcal{C}.

There are no squares in the packing

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

There are no squares in the packing

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James Rickards

1. In base quadruple $(-3,5,8,8)$, compute

$$
\chi_{2}(\text { a packing })=\left(\frac{8}{5}\right)=\left(\frac{3}{5}\right)=-1 .
$$

There are no squares in the packing

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

1. In base quadruple $(-3,5,8,8)$, compute

$$
\chi_{2}(\text { a packing })=\left(\frac{8}{5}\right)=\left(\frac{3}{5}\right)=-1 .
$$

2. So no circle can be tangent to a square.

New invariants of a packing

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

New invariants of a packing

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

$$
\chi_{2}:\{\text { circles }\} \rightarrow\{ \pm 1\}
$$

constant across a packing

New invariants of a packing

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

$$
\chi_{2}:\{\text { circles }\} \rightarrow\{ \pm 1\}
$$

constant across a packing
$\chi_{4}:\{$ circles in packing of type $(6,1)$ or $(6,17)\} \rightarrow\{1, i,-1,-i\}$
satisfies $\chi_{4}(\mathcal{C})^{2}=\chi_{2}(\mathcal{C})$,
constant across a packing.

New invariants of a packing

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

$$
\chi_{2}:\{\text { circles }\} \rightarrow\{ \pm 1\}
$$

constant across a packing

$$
\begin{gathered}
\chi_{4}:\{\text { circles in packing of type }(6,1) \text { or }(6,17)\} \rightarrow\{1, i,-1,-i\} \\
\text { satisfies } \chi_{4}(\mathcal{C})^{2}=\chi_{2}(\mathcal{C}), \\
\text { constant across a packing. }
\end{gathered}
$$

The values of χ_{2} and χ_{4} determine the quadratic and quartic obstructions respectively.

The New Conjecture

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James Rickards

The New Conjecture.

The type of a packing implies the existence of certain quadratic and quartic obstructions:

Type	n^{2} Obstructions	n^{4} Obstructions	L-G false	L-G open
$(6,1,1,-1)$		$n^{4}, 4 n^{4}, 9 n^{4}, 36 n^{4}$	$0,1,4,9,12,16$	
$(6,1,-1)$	$n^{2}, 2 n^{2}, 3 n^{2}, 6 n^{2}$		$0,1,4,9,12,16$	
$(6,5,1)$	$2 n^{2}, 3 n^{2}$		$0,8,12$	$5,20,21$
$(6,5,-1)$	$n^{2}, 6 n^{2}$		0,12	$5,8,20,21$
$(6,13,1)$	$2 n^{2}, 6 n^{2}$		0	$4,12,13,16,21$
$(6,13,-1)$	$n^{2}, 3 n^{2}$		$0,4,12,16$	13,21
$(6,17,1,1)$	$3 n^{2}, 6 n^{2}$	$9 n^{4}, 36 n^{4}$	$0,9,12$	$8,17,20$
$(6,17,1,-1)$	$3 n^{2}, 6 n^{2}$	$n^{4}, 4 n^{4}$	$0,9,12$	$8,17,20$
$(6,17,-1)$	$n^{2}, 2 n^{2}$		$0,8,9,12$	17,20
$(8,7,1)$	$3 n^{2}, 6 n^{2}$		3,6	$7,10,15,18,19,22$
$(8,7,-1)$	$2 n^{2}$		18	$3,6,7,10,15,19,22$
$(8,11,-1)$	$2 n^{2}, 3 n^{2}, 6 n^{2}$		$2,3,6,18$	$11,14,15,23$

Sporadic curvatures dropping off

Apollonian Circle
Packings \& the
Local-Global Conjecture

Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

Thank You!

Apollonian Circle
Packings \& the
Local-Global
Conjecture
Clyde Kertzer, with Summer Haag,
Katherine E. Stange, and James
Rickards

All images generated using James Rickard's Code.

