Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

University of Colorado Boulder

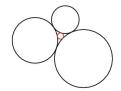
Oct 10, 2023

Apollonian
Circle
Packings &
the
Local-Global
Conjecture

Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

Definition

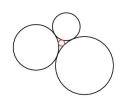

A *Descartes Quadruple* is a set of four mutually tangent circles with disjoint interiors.

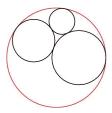
Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

Definition

A *Descartes Quadruple* is a set of four mutually tangent circles with disjoint interiors.

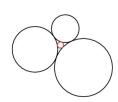


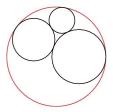

Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

Definition

A *Descartes Quadruple* is a set of four mutually tangent circles with disjoint interiors.

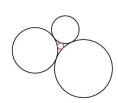


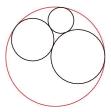

Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

Definition

A *Descartes Quadruple* is a set of four mutually tangent circles with disjoint interiors.


We can only have at most one "inverted" circle!


Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

Definition

A *Descartes Quadruple* is a set of four mutually tangent circles with disjoint interiors.

We can only have at most one "inverted" circle!

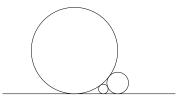
Theorem of Apollonius

If three circles are mutually tangent, there are two other circles that are tangent to all three.

Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

Definition

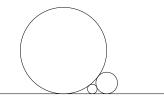

The *curvature* of a circle with radius r is defined to be 1/r.

Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

Definition

The *curvature* of a circle with radius r is defined to be 1/r.

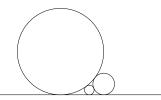


Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

Definition

The *curvature* of a circle with radius r is defined to be 1/r.


Circle with infinite radius

Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

Definition

The *curvature* of a circle with radius r is defined to be 1/r.

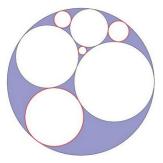
Circle with infinite radius

Descartes Equation

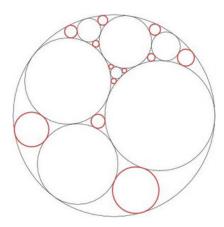
If four mutually tangent circles have curvatures a, b, c, d then

$$(a+b+c+d)^2 = 2(a^2+b^2+c^2+d^2)$$

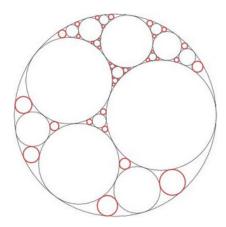
Apollonian Circle Packings & the Local-Global Conjecture

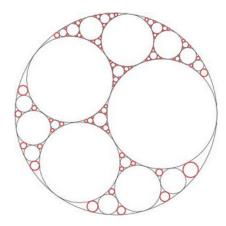

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards If a, b, c, d are integers, the rest are also integers!

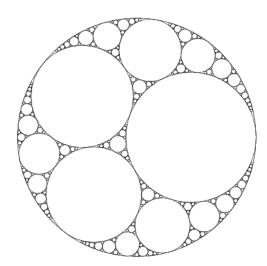
Apollonian Circle Packings & the Local-Global Conjecture

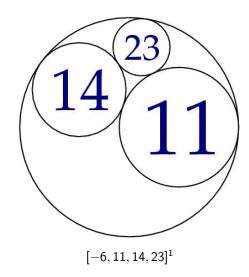

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards If a, b, c, d are integers, the rest are also integers!

Apollonian Circle Packings & the Local-Global Conjecture

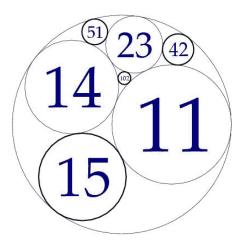

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards If a, b, c, d are integers, the rest are also integers!


Apollonian Circle Packings & the Local-Global Conjecture


Apollonian Circle Packings & the Local-Global Conjecture

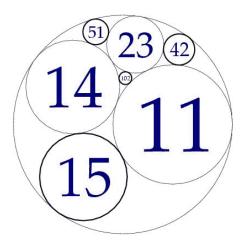

Apollonian Circle Packings & the Local-Global Conjecture

Apollonian Circle Packings & the Local-Global Conjecture


Apollonian Circle Packings & the Local-Global Conjecture

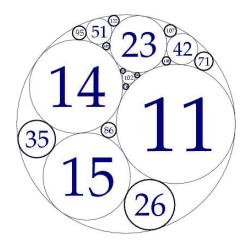
¹Images from: AMS "When Kissing Involves Trigonometry"

Apollonian Circle Packings & the Local-Global Conjecture

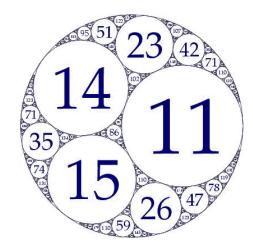

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

[-6, 11, 14, 23]

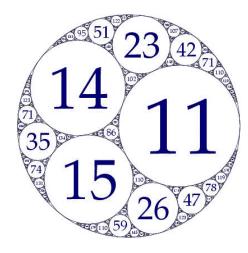
Apollonian Circle Packings & the Local-Global Conjecture


Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

[-6, 11, 14, 23] reduces to [-6, 11, 14, 15]

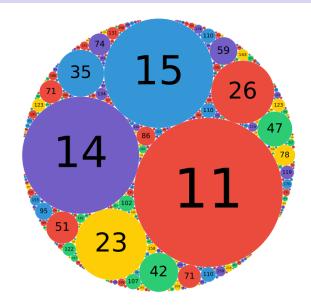

Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

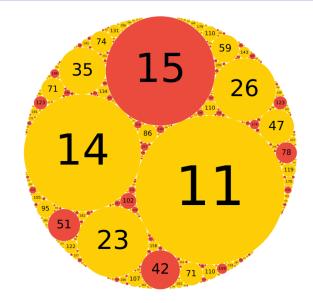

 $\left[-6,11,14,15\right]$

Apollonian Circle Packings & the Local-Global Conjecture

Apollonian Circle Packings & the Local-Global Conjecture


Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

Notice: Once -6, 11, 14, 15 are set, no room for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 17, ...


Apollonian	
Circle	
Packings &	
the	
Local-Global	
Conjecture	
with Summer	
with Summer Haag, Katherine E.	

Apollonian Circle Packings & the Local-Global Conjecture

A 11 1
Apollonian
Circle
Packings &
the
Local-Global
Conjecture
conjecture
Challe Kasteren
Clyde Kertzer,
with Summer
Haag,
Katherine E.
Stange, and
James
Rickards
i tickai us

Apollonian Circle Packings & the Local-Global Conjecture

Apollonian Circle Packings & the Local-Global Conjecture
Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

Apollonian Circle Packings & the Local-Global Conjecture

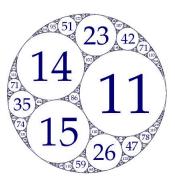
Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

Theorem (Fuchs)

If a congruence obstruction appears, then it appears modulo 24.

Apollonian Circle Packings & the Local-Global Conjecture

Theorem (Fuchs)


Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards If a congruence obstruction appears, then it appears modulo 24.

Туре	Allowed Residues
(6,1)	0, 1, 4, 9, 12, 16
(6,5)	0, 5, 8, 12, 20, 21
(6,13)	0, 4, 12, 13, 16, 21
(6,17)	0, 8, 9, 12, 17, 20
(8,7)	3, 6, 7, 10, 15, 18, 19, 22
(8,11)	2, 3, 6, 11, 14, 15, 18, 23

Apollonian Circle Packings & the Local-Global Conjecture
Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

 $\left[-6,11,14,15\right]$

Туре	Allowed Residues
(6,1)	0, 1, 4, 9, 12, 16
(6,5)	0, 5, 8, 12, 20, 21
(6,13)	0, 4, 12, 13, 16, 21
(6,17)	0, 8, 9, 12, 17, 20
(8,7)	3, 6, 7, 10, 15, 18, 19, 22
(8,11)	2, 3, 6, 11, 14, 15, 18, 23

Local-to-global

A secold sectors.
Apollonian
Circle
Packings &
the
Local-Global
Conjecture
Clyde Kertzer,
with Summer
with Summer
Haag,
Haag,
Haag, Katherine E.
Haag, Katherine E.
Haag, Katherine E. Stange, and
Haag, Katherine E. Stange, and
Haag, Katherine E. Stange, and James
Haag, Katherine E. Stange, and James
Haag, Katherine E. Stange, and
Haag, Katherine E. Stange, and James

Local-to-global

Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards Conjecture. (Graham-Lagarias-Mallows-Wilks-Yan 2003, Fuchs-Sanden 2011)

In a primitive integral Apollonian circle packing, curvatures satisfy a congruence condition modulo 24, and all sufficiently large integers satisfying this condition appear.

Local-to-global

Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards Conjecture. (Graham-Lagarias-Mallows-Wilks-Yan 2003, Fuchs-Sanden 2011)

In a primitive integral Apollonian circle packing, curvatures satisfy a congruence condition modulo 24, and all sufficiently large integers satisfying this condition appear.

Theorem (Bourgain-Kontorovich)

The number of missing curvatures up to N is at most $O(N^{1-\eta})$ for some effectively computable $\eta > 0$.

Local-to-global

Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards Conjecture. (Graham-Lagarias-Mallows-Wilks-Yan 2003, Fuchs-Sanden 2011)

In a primitive integral Apollonian circle packing, curvatures satisfy a congruence condition modulo 24, and all sufficiently large integers satisfying this condition appear.

Theorem (Bourgain-Kontorovich)

The number of missing curvatures up to N is at most $O(N^{1-\eta})$ for some effectively computable $\eta > 0$.

Body of work by Graham-Lagarias-Mallows-Wilks-Yan, Sarnak, Bourgain-Fuchs, Bourgain-Kontorovich, Fuchs-S.-Zhang

Apollonian
Circle
Packings &
the
Local-Global
Conjecture

Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

There is a bijection between

Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

There is a bijection between

1. curvatures of circles tangent to fixed mother circle of curvature, and

Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

There is a bijection between

1. curvatures of circles tangent to fixed mother circle of curvature, and

2.
$$\{f_a(x, y) - a : gcd(x, y) = 1\}$$

Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

There is a bijection between

1. curvatures of circles tangent to fixed mother circle of curvature, and

2.
$$\{f_a(x, y) - a : gcd(x, y) = 1\}$$

where f_a is a primitive integral binary quadratic form of discriminant $-4a^2$ associated to the 'mother circle'.

Computational Evidence

Computational Evidence

Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards Fuchs-Sanden computed curvatures up to:

$$10^8$$
 for $(-1, 2, 2, 3)$
 $5 \cdot 10^8$ for $(-11, 21, 24, 28)$

and observed for (-11, 21, 24, 28), there were still a small number (up to 0.013%) of missing curvatures in the range $(4 \cdot 10^8, 5 \cdot 10^8)$ for residue classes 0, 4, 12, 16 mod 24.

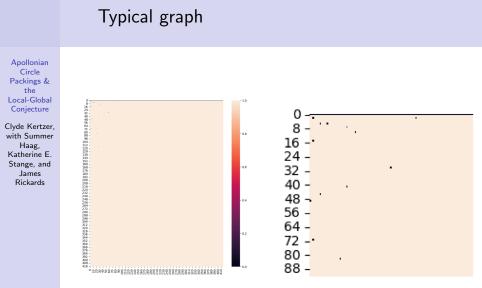
Apollonian
Circle
Packings &
the
Local-Global
Conjecture

Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

1. Fix a pair of curvatures, and study what packings contain them.

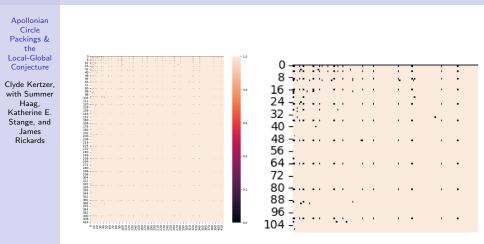
Apollonian Circle Packings & the Local-Global Conjecture


- 1. Fix a pair of curvatures, and study what packings contain them.
- 2. Plot: for an admissible pair of residue classes modulo 24, black dot if no packing has that pair.

Apollonian Circle Packings & the Local-Global Conjecture

- 1. Fix a pair of curvatures, and study what packings contain them.
- 2. Plot: for an admissible pair of residue classes modulo 24, black dot if no packing has that pair.
- 3. Local-global: finitely many black dots on any row or column.

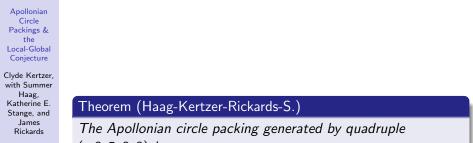
- ·	. I
I vpical	graph
51	01


A
Apollonian
Circle
Packings &
the
Local-Global
Conjecture
<u> </u>
Clyde Kertzer,
with Summer
Haag,
Katherine E.
Stange, and
James
Rickards
Nickards

Residue classes 0 (mod 24) and 12 (mod 24) (Summer Haag)

One weird graph

One weird graph



Residue classes 0 (mod 24) and 8 (mod 24) (Summer Haag)

The conjecture is false

Apollonian
Circle
Packings &
the
Local-Global
Conjecture

The conjecture is false

(-3, 5, 8, 8) has no square curvatures.

Amellowiew
Apollonian
Circle
Packings &
the
Local-Global
Conjecture
conjecture
Clyde Kertzer,
Ciyue Kertzer,
the Commence
with Summer
Haag.
Haag,
Katherine E.
Katherine E.
Katherine E. Stange, and
Katherine E. Stange, and
Katherine E. Stange, and James
Katherine E. Stange, and James
Katherine E. Stange, and
Katherine E. Stange, and James
Katherine E. Stange, and James

Apollonian
Circle
Packings &
the
Local-Global
Conjecture1. All curvatures n in this packing have $n \equiv 0, 1 \pmod{4}$.Clyde Kertzer,
with Summer
Haag,
Katherine E.
Stange, and
James
Rickards1. All curvatures n in this packing have $n \equiv 0, 1 \pmod{4}$.

Apollonian Circle Packings & the Local-Global Conjecture

- 1. All curvatures *n* in this packing have $n \equiv 0, 1 \pmod{4}$.
- 2. Fix circle C of curvature n; tangent curvatures $f_C(x, y) n$ of discriminant $-4n^2$

Apollonian Circle Packings & the Local-Global Conjecture

- 1. All curvatures n in this packing have $n \equiv 0, 1 \pmod{4}$.
- 2. Fix circle C of curvature n; tangent curvatures $f_C(x, y) n$ of discriminant $-4n^2$
- 3. Modulo *n* and equivalence, values are Ax^2 : only quadratic residues or only non-residues.

Apollonian Circle Packings & the Local-Global Conjecture

- 1. All curvatures n in this packing have $n \equiv 0, 1 \pmod{4}$.
- 2. Fix circle C of curvature n; tangent curvatures $f_C(x, y) n$ of discriminant $-4n^2$
- 3. Modulo *n* and equivalence, values are Ax^2 : only quadratic residues or only non-residues.
- 4. Define $\chi_2(\mathcal{C}) = 1$ if residues, -1 otherwise.

Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards 1. Suppose that C_1, C_2 in a packing are tangent, having non-zero coprime curvatures *a* and *b* respectively.

Apollonian Circle Packings & the Local-Global Conjecture

- 1. Suppose that C_1, C_2 in a packing are tangent, having non-zero coprime curvatures *a* and *b* respectively.
- 2. Quadratic reciprocity:

$$\chi_2(\mathcal{C}_1)\chi_2(\mathcal{C}_2) = \left(\frac{a}{b}\right)\left(\frac{b}{a}\right) = 1 \implies \chi_2(\mathcal{C}_1) = \chi_2(\mathcal{C}_2).$$

Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

- 1. Suppose that C_1, C_2 in a packing are tangent, having non-zero coprime curvatures *a* and *b* respectively.
- 2. Quadratic reciprocity:

$$\chi_2(\mathcal{C}_1)\chi_2(\mathcal{C}_2) = \left(\frac{a}{b}\right)\left(\frac{b}{a}\right) = 1 \implies \chi_2(\mathcal{C}_1) = \chi_2(\mathcal{C}_2).$$

3. Any two circles in the packing are connected by a path of pairwise coprime curvatures.

Apollonian Circle Packings & the Local-Global Conjecture

- 1. Suppose that C_1, C_2 in a packing are tangent, having non-zero coprime curvatures *a* and *b* respectively.
- 2. Quadratic reciprocity:

$$\chi_2(\mathcal{C}_1)\chi_2(\mathcal{C}_2) = \left(\frac{a}{b}\right)\left(\frac{b}{a}\right) = 1 \implies \chi_2(\mathcal{C}_1) = \chi_2(\mathcal{C}_2).$$

- 3. Any two circles in the packing are connected by a path of pairwise coprime curvatures.
- 4. So $\chi_2(\mathcal{C})$ is independent of the choice of circle \mathcal{C} .

There are no squares in the packing

Apollonian
Circle
Packings &
the
Local-Global
Conjecture

There are no squares in the packing

Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

1. In base quadruple (-3, 5, 8, 8), compute

$$\chi_2(a \text{ packing}) = \left(\frac{8}{5}\right) = \left(\frac{3}{5}\right) = -1.$$

There are no squares in the packing

Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

1.

In base quadruple
$$(-3, 5, 8, 8)$$
, compute $\chi_2(a \text{ packing}) = \left(\frac{8}{5}\right) = \left(\frac{3}{5}\right) = -1.$

2. So no circle can be tangent to a square.

Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

 $\chi_2: \{\text{circles}\} \rightarrow \{\pm 1\}$

constant across a packing

Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards $\chi_{2}:\{\mathsf{circles}\}\to\{\pm1\}$

constant across a packing

 χ_4 : {circles in packing of type (6,1) or (6,17)} \rightarrow {1, *i*, -1, -*i*}

satisfies $\chi_4(\mathcal{C})^2 = \chi_2(\mathcal{C})$, constant across a packing.

Apollonian Circle Packings & the Local-Global Conjecture

Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards $\chi_2: \{ circles \} \rightarrow \{ \pm 1 \}$

constant across a packing

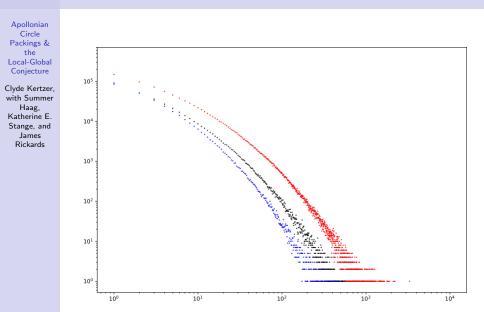
 χ_4 : {circles in packing of type (6,1) or (6,17)} \rightarrow {1, *i*, -1, -*i*}

satisfies $\chi_4(\mathcal{C})^2 = \chi_2(\mathcal{C})$, constant across a packing.

The values of χ_2 and χ_4 determine the quadratic and quartic obstructions respectively.

The New Conjecture

Apollonian Circle Packings & the Local-Global Conjecture


Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards

The New Conjecture.

The type of a packing implies the existence of certain quadratic and quartic obstructions:

Туре	n ² Obstructions	n ⁴ Obstructions	L-G false	L-G open
(6, 1, 1, -1)		n ⁴ , 4n ⁴ , 9n ⁴ , 36n ⁴	0, 1, 4, 9, 12, 16	
(6, 1, -1)	n ² , 2n ² , 3n ² , 6n ²		0, 1, 4, 9, 12, 16	
(6,5,1)	2n ² , 3n ²		0, 8, 12	5, 20, 21
(6,5,-1)	n ² ,6n ²		0,12	5, 8, 20, 21
(6,13,1)	2n ² , 6n ²		0	4, 12, 13, 16, 21
(6, 13, -1)	n ² , 3n ²		0, 4, 12, 16	13,21
(6, 17, 1, 1)	3n ² , 6n ²	9n ⁴ , 36n ⁴	0,9,12	8, 17, 20
(6, 17, 1, -1)	3n ² , 6n ²	n ⁴ , 4n ⁴	0,9,12	8, 17, 20
(6, 17, -1)	n ² , 2n ²		0, 8, 9, 12	17,20
(8,7,1)	3n ² , 6n ²		3,6	7, 10, 15, 18, 19, 22
(8,7,-1)	2 <i>n</i> ²		18	3, 6, 7, 10, 15, 19, 22
(8,11,-1)	2n ² , 3n ² , 6n ²		2, 3, 6, 18	11, 14, 15, 23

Sporadic curvatures dropping off

	Thank You!
Apollonian Circle Packings & the Local-Global Conjecture	
Clyde Kertzer, with Summer Haag, Katherine E. Stange, and James Rickards	All images generated using James Rickard's Code.