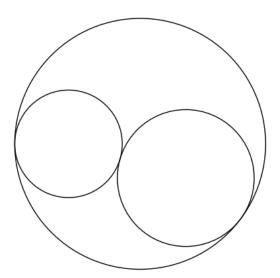
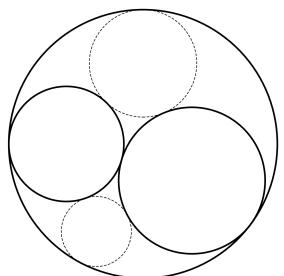
Overview of Local-to-Global Conjecture for Apollonain Circle Packings

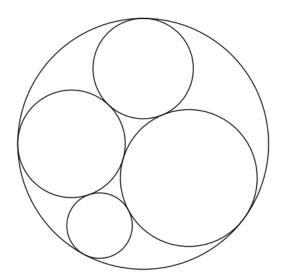
Summer Haag, Clyde Kertzer, James Rickards, Katherine E. Stange

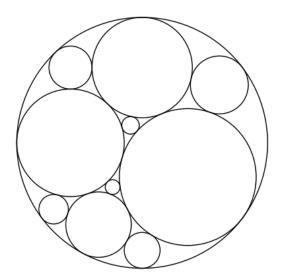
University of Colorado Boulder

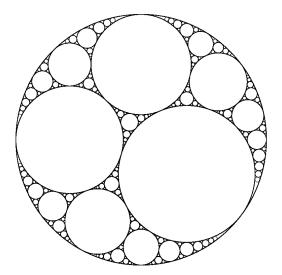
July 5, 2024

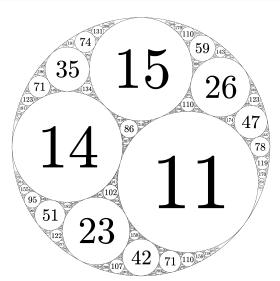


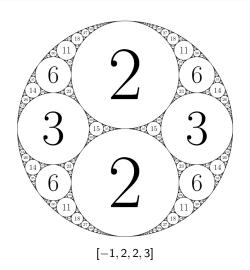


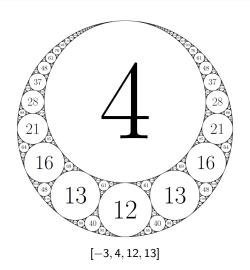


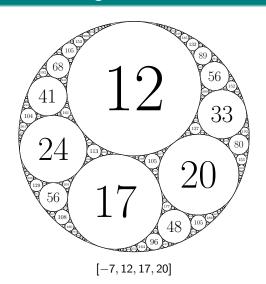












The *curvature* of a circle with radius r is 1/r.

The *curvature* of a circle with radius r is 1/r. A circle with radius 3 has curvature $\frac{1}{3}$

The *curvature* of a circle with radius r is 1/r. A circle with radius 3 has curvature $\frac{1}{3}$ A circle with radius $\frac{1}{6}$ has curvature 6

The *curvature* of a circle with radius r is 1/r.

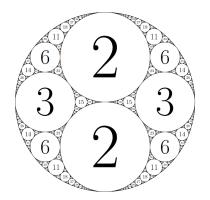
A circle with radius 3 has curvature $\frac{1}{3}$ A circle with radius $\frac{1}{6}$ has curvature 6

Negative curvature means the interior and exterior are flipped

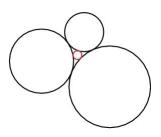
Curvatures a, b, c, d of four mutually tangent circles have curvatures (a Descartes Quadruple) then

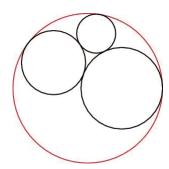
Curvatures a, b, c, d of four mutually tangent circles have curvatures (a Descartes Quadruple) then

$$(a+b+c+d)^2 = 2(a^2+b^2+c^2+d^2).$$



[-1, 2, 2, 3]





Given a, b, c, there exists d, d' with

$$d = 2(a+b+c) - d'$$

Given a, b, c, there exists d, d' with

$$d = 2(a+b+c) - d'$$

Corollary

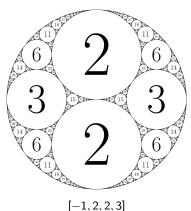
If three mutually tangent circles have curvatures a, b, and c, then the two circles of Apollonius, d and d' have curvatures

$$d = a + b + c + 2\sqrt{ab + ac + bc}$$

$$d' = a + b + c - 2\sqrt{ab + ac + bc}$$

Moreover,
$$d + d' = 2(a + b + c)$$
.

So if $a, b, c, d \in \mathbb{Z}$ then all curvatures $\in \mathbb{Z}$



Given a, b, c, there exists d, d' with

$$d = 2(a+b+c) - d'$$

Corollary

If three mutually tangent circles have curvatures a, b, and c, then the two circles of Apollonius, d and d' have curvatures

$$d = a + b + c + 2\sqrt{ab + ac + bc}$$
$$d' = a + b + c - 2\sqrt{ab + ac + bc}$$

Given a, b, c, there exists d, d' with

$$d = 2(a+b+c) - d'$$

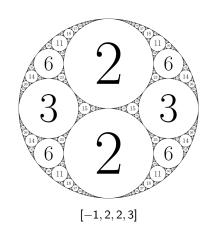
Corollary

If three mutually tangent circles have curvatures a, b, and c, then the two circles of Apollonius, d and d' have curvatures

$$d = a + b + c + 2\sqrt{ab + ac + bc}$$
$$d' = a + b + c - 2\sqrt{ab + ac + bc}$$

Moreover,
$$d + d' = 2(a + b + c)$$
.

So if $a, b, c, d \in \mathbb{Z}$ then all curvatures $\in \mathbb{Z}$



$$a \equiv b \pmod{n} \iff \text{there exists some } k \in \mathbb{Z} \text{ with } a = nk + b$$

$$a \equiv b \pmod{n} \iff$$
 there exists some $k \in \mathbb{Z}$ with $a = nk + b$

Think remainder when dividing by n.

$$a \equiv b \pmod{n} \iff \text{there exists some } k \in \mathbb{Z} \text{ with } a = nk + b$$

Think remainder when dividing by n. We are mainly concerned with n = 24 (spoiler)

$$a \equiv b \pmod{n} \iff$$
 there exists some $k \in \mathbb{Z}$ with $a = nk + b$

Think remainder when dividing by n. We are mainly concerned with n=24 (spoiler) Some examples:

$$a \equiv b \pmod{n} \iff \text{there exists some } k \in \mathbb{Z} \text{ with } a = nk + b$$

Think remainder when dividing by n. We are mainly concerned with n=24 (spoiler)

$$a \equiv b \pmod{n} \iff \text{there exists some } k \in \mathbb{Z} \text{ with } a = nk + b$$

Think remainder when dividing by n. We are mainly concerned with n=24 (spoiler)

•
$$30 \equiv 6 \pmod{24} \implies 30 =$$

$$a \equiv b \pmod{n} \iff \text{ there exists some } k \in \mathbb{Z} \text{ with } a = nk + b$$

Think remainder when dividing by n. We are mainly concerned with n=24 (spoiler)

•
$$30 \equiv 6 \pmod{24} \implies 30 = 24 \cdot 1 + 6$$

$$a \equiv b \pmod{n} \iff \text{there exists some } k \in \mathbb{Z} \text{ with } a = nk + b$$

Think remainder when dividing by n. We are mainly concerned with n=24 (spoiler)

•
$$30 \equiv 6 \pmod{24} \implies 30 = 24 \cdot 1 + 6$$

$$a \equiv b \pmod{n} \iff \text{there exists some } k \in \mathbb{Z} \text{ with } a = nk + b$$

Think remainder when dividing by n. We are mainly concerned with n=24 (spoiler)

•
$$30 \equiv 6 \pmod{24} \implies 30 = 24 \cdot 1 + 6$$

•
$$96 \equiv 0 \pmod{24} \implies 96 =$$

$$a \equiv b \pmod{n} \iff \text{there exists some } k \in \mathbb{Z} \text{ with } a = nk + b$$

Think remainder when dividing by n. We are mainly concerned with n=24 (spoiler)

•
$$30 \equiv 6 \pmod{24} \implies 30 = 24 \cdot 1 + 6$$

•
$$96 \equiv 0 \pmod{24} \implies 96 = 24 \cdot 3 + 0$$

$$a \equiv b \pmod{n} \iff \text{there exists some } k \in \mathbb{Z} \text{ with } a = nk + b$$

Think remainder when dividing by n. We are mainly concerned with n=24 (spoiler)

- $30 \equiv 6 \pmod{24} \implies 30 = 24 \cdot 1 + 6$
- $96 \equiv 0 \pmod{24} \implies 96 = 24 \cdot 3 + 0$
- 61 ≡

$$a \equiv b \pmod{n} \iff \text{there exists some } k \in \mathbb{Z} \text{ with } a = nk + b$$

Think remainder when dividing by n. We are mainly concerned with n=24 (spoiler)

- $30 \equiv 6 \pmod{24} \implies 30 = 24 \cdot 1 + 6$
- $96 \equiv 0 \pmod{24} \implies 96 = 24 \cdot 3 + 0$
- 61 ≡ 37 ≡

Reminder: $a \equiv b \pmod{n}$

$$a \equiv b \pmod{n} \iff \text{there exists some } k \in \mathbb{Z} \text{ with } a = nk + b$$

Think remainder when dividing by n. We are mainly concerned with n=24 (spoiler)

Some examples:

- $30 \equiv 6 \pmod{24} \implies 30 = 24 \cdot 1 + 6$
- $\bullet 96 \equiv 0 \pmod{24} \implies 96 = 24 \cdot 3 + 0$
- $\bullet \ 61 \equiv 37 \equiv 13 \ (\mathsf{mod}\ 24) \implies 61 =$

Reminder: $a \equiv b \pmod{n}$

$$a \equiv b \pmod{n} \iff \text{ there exists some } k \in \mathbb{Z} \text{ with } a = nk + b$$

Think remainder when dividing by n. We are mainly concerned with n=24 (spoiler)

Some examples:

•
$$30 \equiv 6 \pmod{24} \implies 30 = 24 \cdot 1 + 6$$

$$\bullet 96 \equiv 0 \pmod{24} \implies 96 = 24 \cdot 3 + 0$$

•
$$61 \equiv 37 \equiv 13 \pmod{24} \implies 61 = 24 \cdot 2 + 13$$

Reminder: $a \equiv b \pmod{n}$

$$a \equiv b \pmod{n} \iff \text{ there exists some } k \in \mathbb{Z} \text{ with } a = nk + b$$

Think remainder when dividing by n. We are mainly concerned with n=24 (spoiler)

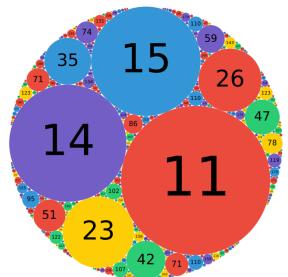
Some examples:

•
$$30 \equiv 6 \pmod{24} \implies 30 = 24 \cdot 1 + 6$$

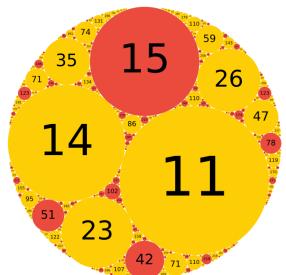
$$\bullet 96 \equiv 0 \pmod{24} \implies 96 = 24 \cdot 3 + 0$$

•
$$61 \equiv 37 \equiv 13 \pmod{24} \implies 61 = 24 \cdot 2 + 13$$

Curvatures Mod 5



Curvatures Mod 3



[-7, 12, 17, 20] colored mod 24

[-2, 3, 6, 7] colored mod 24

residues mod 24
0,1,4,9,12,16
0,5,8,12,20,21
0,4,12,13,16,21
0,8,9,12,17,20
3,6,7,10,15,18,19,22
2,3,6,11,14,15,18,23

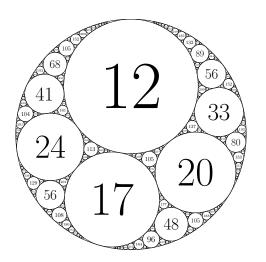
Type	residues mod 24
а	0,1,4,9,12,16
b	0,5,8,12,20,21
С	0,4,12,13,16,21
d	0,8,9,12,17,20
е	3,6,7,10,15,18,19,22
f	2,3,6,11,14,15,18,23

Туре	residues mod 24		
а	0,1,4,9,12,16		
b	0,5,8,12,20,21		
С	0,4,12,13,16,21		
d	0,8,9,12,17,20		
е	3,6,7,10,15,18,19,22		
f	2,3,6,11,14,15,18,23		

Theorem (Fuchs, 2010)

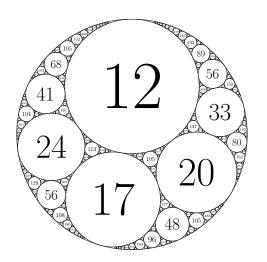
If a congruence obstruction appears, then it appears mod 24.

Missing curvatures



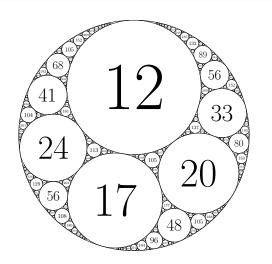
[-7, 12, 17, 20] type d

Missing curvatures



[-7, 12, 17, 20] type d $\implies 0, 8, 9, 12, 17, 20$

Missing curvatures



[-7,12,17,20] type d \implies 0,8,9,12,17,20 : no room for 8,9,32,...

We refer to an *admissible curvature* as an integer that satisfies the congruence condition on the circle packing

We refer to an *admissible curvature* as an integer that satisfies the congruence condition on the circle packing

Conjecture (Graham-Lagarias-Mallows-Wilks-Yan 2003, Fuchs-Sanden 2011):

We refer to an *admissible curvature* as an integer that satisfies the congruence condition on the circle packing

Conjecture (Graham-Lagarias-Mallows-Wilks-Yan 2003, Fuchs-Sanden 2011):

Eventually, all admissible curvatures appear in a primitive Apollonian circle packing

Fuchs-Sanden computed curvatures up to:

Fuchs-Sanden computed curvatures up to:

$$10^8$$
 for $[-1, 2, 2, 3]$

Fuchs-Sanden computed curvatures up to:

$$10^8$$
 for $[-1, 2, 2, 3]$

$$5 \cdot 10^8 \text{ for } [-11, 21, 24, 28]$$

Fuchs-Sanden computed curvatures up to:

$$10^8$$
 for $[-1, 2, 2, 3]$

$$5 \cdot 10^8$$
 for $[-11, 21, 24, 28]$

For [-11,21,24,28], there were still a small number (up to 0.013%) of missing curvatures in the range $(4\cdot10^8,5\cdot10^8)$ for residue classes $0,4,12,16\pmod{24}$

• Fix a pair of curvatures and see what packings contain them

- Fix a pair of curvatures and see what packings contain them
 - Since 0 and 12 can appear in the same packing compare integers in those residue classes

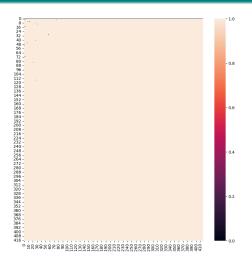
- Fix a pair of curvatures and see what packings contain them
 - Since 0 and 12 can appear in the same packing compare integers in those residue classes
 - (12, 24),

- Fix a pair of curvatures and see what packings contain them
 - Since 0 and 12 can appear in the same packing compare integers in those residue classes
 - (12, 24), (12, 48),

- Fix a pair of curvatures and see what packings contain them
 - Since 0 and 12 can appear in the same packing compare integers in those residue classes
 - (12, 24), (12, 48), (36, 48) etc.
- For an acceptable pair, black dot if no packing contains them

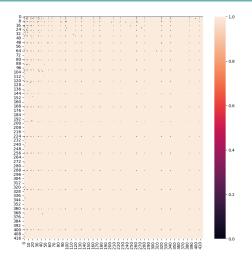
- Fix a pair of curvatures and see what packings contain them
 - Since 0 and 12 can appear in the same packing compare integers in those residue classes
 - (12, 24), (12, 48), (36, 48) etc.
- For an acceptable pair, black dot if no packing contains them
- Local-to-global: finitely many black dots for a row or column

Usual Graph



Residue classes: 0 (mod 24) and 12 (mod 24)

Weird Graph



Residue classes: 0 (mod 24) and 8 (mod 24)

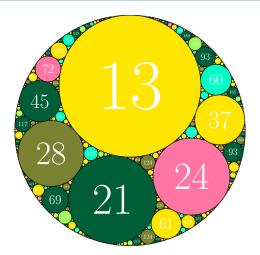
Local-to-global conjecture is false

Theorem (Haag-Kertzer-Stange-Rickards) Curvatures of the form $12k^2$ and $8n^2$ with $n \equiv 1, 2 \pmod{3}$ will never appear in the same packing

The New Conjecture

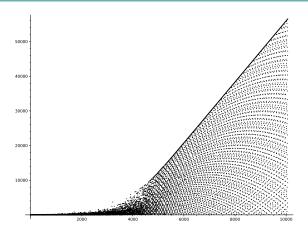
Туре	Quadratic	Quartic	L-G false	L-G open
a				0, 1, 4, 9, 12, 16
а		$n^4, 4n^4, 9n^4, 36n^4$	0, 1, 4, 9, 12, 16	
а	$n^2, 2n^2, 3n^2, 6n^2$		0, 1, 4, 9, 12, 16	
b	$2n^2, 3n^2$		0, 8, 12	5, 20, 21
b	$n^2, 6n^2$		0,12	5, 8, 20, 21
С	$2n^2, 6n^2$		0	4, 12, 13, 16, 21
C	$\frac{n^2}{3n^2}$		0, 4, 12, 16	13 , 21
d	$3n^2, 6n^2$	$9n^4, 36n^4$	0, 9, 12	8, 17, 20
d	$3n^2, 6n^2$	$n^4, 4n^4$	0, 9, 12	8, 17, 20
d	$n^2, 2n^2$		0, 8, 9, 12	17, 20
е	$3n^2, 6n^2$		3,6	7, 10, 15, 18, 19, 22
е	2 <i>n</i> ²		18	3, 6, 7, 10, 15, 19, 22
f				2, 3, 6, 11, 14, 15, 17, 23
f	$2n^2, 3n^2, 6n^2$		2, 3, 6, 18	11, 14, 15, 23

Apollonian Circle Packings



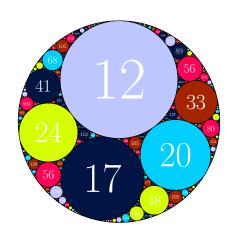
[-8, 13, 21, 24]

Some evidence



Successive differences of missing curvatures in the packing [-4,5,20,21]. The quadratic families $2n^2$ and $3n^2$ begin to predominate. (There are 3659 numbers $<10^{10}$, and occur increasingly sparsely.)

Thank You!!



roof.	

Proof.

Writing the Descartes equation as a quadratic polynomial in d we get

$$2(a^2 + b^2 + c^2 + d^2) - (a + b + c + d)^2 = 0$$

$$d^2 - 2d(a + b + c) + (a^2 + b^2 + c^2 - 2ab - 2bc - 2ac) = 0.$$

Proof.

Writing the Descartes equation as a quadratic polynomial in d we get

$$2(a^2 + b^2 + c^2 + d^2) - (a + b + c + d)^2 = 0$$

$$d^2 - 2d(a + b + c) + (a^2 + b^2 + c^2 - 2ab - 2bc - 2ac) = 0.$$

The quadratic formula gives

Proof.

Writing the Descartes equation as a quadratic polynomial in d we get

$$2(a^2 + b^2 + c^2 + d^2) - (a + b + c + d)^2 = 0$$

$$d^2 - 2d(a + b + c) + (a^2 + b^2 + c^2 - 2ab - 2bc - 2ac) = 0.$$

The quadratic formula gives

$$d = (a + b + c)$$

$$\pm \frac{\sqrt{4(a + b + c)^2 - 4(a^2 + b^2 + c^2 - 2ab - 2bc - 2ac)}}{2}$$

$$= a + b + c \pm 2\sqrt{ab + bc + ca}.$$

Proof.

Writing the Descartes equation as a quadratic polynomial in d we get

$$2(a^2 + b^2 + c^2 + d^2) - (a + b + c + d)^2 = 0$$

$$d^2 - 2d(a + b + c) + (a^2 + b^2 + c^2 - 2ab - 2bc - 2ac) = 0.$$

The quadratic formula gives

$$d = (a + b + c)$$

$$\pm \frac{\sqrt{4(a + b + c)^2 - 4(a^2 + b^2 + c^2 - 2ab - 2bc - 2ac)}}{2}$$

$$= a + b + c + 2\sqrt{ab + bc + ca}$$

Thus, there are two options for d. Their sum is 2(a+b+c).

